Нужна помощь в написании работы?

Метод наименьших квадратов — математический (математико-статистический) прием, служащий для выравнивания динамических рядов, выявления формыкорреляционной связи между случайными величинами и др. Состоит в том, что функция, описывающая данное явление, аппроксимируется более простой функцией. Причем последняя подбирается с таким расчетом, чтобы среднеквадратичное отклонение (см.Дисперсия) фактических уровней функции в наблюдаемых точках от выровненных было наименьшим.

Напр., по имеющимся данным (xi,yi) (i = 1, 2, ..., n) строится такая кривая y = a + bx, на которой достигается минимум суммы квадратов отклонений

http://slovari.yandex.ru/illustrations/lopatnikov/pictures/m196.gif

т. е. минимизируется функция, зависящая от двух параметров: a — отрезок на оси ординат и b — наклон прямой.

Уравнения, дающие необходимые условия минимизации функции S(a,b), называются нормальными уравнениями. В качестве аппроксимирующих функций применяются не только линейная (выравнивание по прямой линии), но и квадратическая, параболическая, экспоненциальная и др. Пример выравнивания динамического ряда по прямой см. на рис. M.2, где сумма квадратов расстояний (y1 – 1)2 + (y2 – 2)2 .... — наименьшая, и получившаяся прямая наилучшим образом отражает тенденцию динамического ряда наблюдений за некоторым показателем во времени.

Для несмещенности МНК-оценок необходимо и достаточно выполнения важнейшего условия регрессионного анализа: условное по факторам математическое ожидание случайной ошибки должно быть равно нулю. Данное условие, в частности, выполнено, если: 1.математическое ожидание случайных ошибок равно нулю, и 2.факторы и случайные ошибки — независимые случайные величины. Первое условие можно считать выполненным всегда для моделей с константой, так как константа берёт на себя ненулевое математическое ожидание ошибок. Второе условие — условие экзогенности факторов — принципиальное. Если это свойство не выполнено, то можно считать, что практически любые оценки будут крайне неудовлетворительными: они не будут даже состоятельными (то есть даже очень большой объём данных не позволяет получить качественные оценки в этом случае).

Наиболее распространенным в практике статистического оценивания параметров уравнений регрессии является метод наименьших квадратов. Этот метод основан на ряде предпосылок относительно природы данных и результатов построения модели. Основные из них - это четкое разделение исходных переменных на зависимые и независимые, некоррелированность факторов, входящих в уравнения, линейность связи, отсутствие автокорреляции остатков, равенство их математических ожиданий нулю и постоянная дисперсия.

Одной из основных гипотез МНК является предположение о равенстве дисперсий отклонений еi, т.е. их разброс вокруг среднего (нулевого) значения ряда должен быть величиной стабильной. Это свойство называется гомоскедастичностью. На практике дисперсии отклонений достаточно часто неодинаковы, то есть наблюдается гетероскедастичность. Это может быть следствием разных причин. Например, возможны ошибки в исходных данных. Случайные неточности в исходной информации, такие как ошибки в порядке чисел, могут оказать ощутимое влияние на результаты. Часто больший разброс отклонений єi, наблюдается при больших значениях зависимой переменной (переменных). Если в данных содержится значительная ошибка, то, естественно, большим будет и отклонение модельного значения, рассчитанного по ошибочным данным. Для того, чтобы избавиться от этой ошибки нам нужно уменьшить вклад этих данных в результаты расчетов, задать для них меньший вес, чем для всех остальных. Эта идея реализована во взвешенном МНК.

Поделись с друзьями
Добавить в избранное (необходима авторизация)