Нужна помощь в написании работы?

            В центре внимания исследователей находятся обычно общие закономерности, скрытые в эмпирических данных и отражающие внутреннюю структуру явления. Трендом (или тенденцией) называют неслучайную медленно меняющуюся составляющую временного ряда, на которую могут накладываться случайные колебания или сезонные эффекты.

Методы выделения тренда .

            Выбор стратегии и методов предварительной обработки и анализа рядов динамики безусловно зависит от конечной цели исследователя. Однако, как правило, первым этапом является оценка тренда временного ряда.

            Для длинных рядов выделение тренда носит обычно разведочный характер, так как часто невозможно указать подходящую параметрическую кривую для аппроксимации ряда на всей его длине. Для выделения тренда в этом случае используют различные непараметрические методы анализа временных рядов, такие как, сглаживание скользящими средними или скользящими медианами, частотную фильтрацию и т.п.

В отличие от параметрических методов выделения тренда, эти методы пригодны лишь для осреднения значений ряда по точкам некоторой окрестности и немогут быть использованы для прогнозирования (экстраполяции) динамических рядов, поскольку не дают в явном виде расчетного уравнения детерминированной компоненты f(t).

            Однако получение достаточно гладкой траектории дает возможность визуально оценить наличие тенденции в условиях сильной зашумленности, а также выделить ряд остатков y(t) =x(t) - f(t), как случайную компоненту временной последовательности, если конечной цельюисследования является построение моделей авторегрессии для прогнозирования.

            Для краткосрочного прогнозирования рядов, содержащих неправильно меняющийся тренд, можно использовать метод экспоненциального сглаживания, в котором при построении прогноза наибольшие веса приписываются последним наблюдениям.

            Для коротких временных рядов наиболее употребительны параметрические методы

выделения тренда. В этом случае делается попытка представить временной ряд в виде суммы детерминированной функции времени f(t, a), зависящей от небольшого числа неизвестных параметров, и случайной компоненты

            Не существует "автоматического" способа обнаружения тренда в временном ряде. Однако если тренд является монотонным (устойчиво возрастает или устойчиво убывает), то анализировать такой ряд обычно нетрудно. Если временные ряды содержат значительную ошибку, то первым шагом выделения тренда является сглаживание.

            Сглаживание. Сглаживание всегда включает некоторый способ локального усреднения данных, при котором несистематические компоненты взаимно погашают друг друга. Самый общий метод сглаживания - скользящее среднее, в котором каждый член ряда заменяется простым или взвешенным средним n соседних членов. Вместо среднего можно использовать медиану значений, попавших в окно. Основное преимущество медианного сглаживания, в сравнении со сглаживанием скользящим средним, состоит в том, что результаты становятся более устойчивыми к выбросам (имеющимся внутри окна). Таким образом, если в данных имеются выбросы (связанные, например, с ошибками измерений), то сглаживание медианой обычно приводит к более гладким или, по крайней мере, более "надежным" кривым, по сравнению со скользящим средним с тем же самым окном. Основной недостаток медианного сглаживания в том, что при отсутствии явных выбросов, он приводит к более "зубчатым" кривым (чем сглаживание скользящим средним) и не позволяет использовать веса.

            Относительно реже, когда ошибка измерения очень большая, используется метод сглаживания методом наименьших квадратов, взвешенных относительно расстояния или метод отрицательного экспоненциально взвешенного сглаживания. Все эти методы отфильтровывают шум и преобразуют данные в относительно гладкую кривую (см. соответствующие разделы, где каждый из этих методов описан более подробно).

            Подгонка функции. Многие монотонные временные ряды можно хорошо приблизить линейной функцией. Если же имеется явная монотонная нелинейная компонента, то данные вначале следует преобразовать, чтобы устранить нелинейность. Обычно для этого используют логарифмическое, экспоненциальное или (менее часто) полиномиальное преобразование данных.

Поделись с друзьями