Нужна помощь в написании работы?

Еще относительно недавно ни у кого не возникало сомнения в том, что окружающая среда — воздух, земля и вода — всегда будут эффективно «перерабатывать» бытовые, промышленные и сельскохозяйственные отходы. Теперь мы знаем, что это не так. Человечество столкнулось с двумя фундаментальными проблемами: переработкой отходов, постоянно образующихся в огромном количестве, и разрушением токсичных соединений, десятилетиями накапливавшихся на свалках, в воде и почве.

Все промышленные отходы можно условно разделить на две категории:

1. Отходы производств основанных на использовании биологических  материалов и процессов  (продукты сельского хозяйства, пищевой и лесоперерабатывающей промышленности).

2.     Отходы неприродных, синтетических веществ (химическая

     промышленность).

         Большинство отходов первой категории может легко перерабатываться и утилизоваться  биологическим путем. Более того, многие виды отходов могут использоваться как субстрат для различных биотехнологических производств. Разработаны различные виды аэробной и анаэробной очистки сточных вод, которая является самым крупным, по объему, биотехнологическим производством.

         Более сложной является ситуация с отходами второй категории. Большинство соединений, составляющих отходы, не встречаются в природе и поэтому “не знакомы” микроорганизмам – деструкторам. Но, если в их структуру входят функциональные группы, встречающиеся в природных соединениях, то они могут подвергаться, в разной степени, частичной биодеградации (биодеструкции) с потерей своих токсичных свойств. Однако это бывает не всегда. Часто процесс биодеструкции приводит к образованию других вредных веществ, иногда с еще большей токсичностью. Так дегалогенирование трихлорэтилена некоторыми почвенными бактериями приводит к образованию еще более токсичного и канцерогенного соединения – винилхлорида. Поэтому прежде чем  внедрять процесс биоутилизации того или иного неприродного химического вещества необходимо тщательно исследовать всю цепочку его превращений, подобрать оптимальные штаммы микроорганизмов и условия проведения процесса. Однако это не всегда возможно, т.к. в таких процессах могут участвовать микробные сообщества, состоящие из большого количества членов (до нескольких десятков), комплексно воздействующих на молекулу разрушаемого соединения за счет поставки тех или иных ферментов и кометаболитов. Проследить всю цепочку превращений и подобрать стандартные условия в этом случае очень сложно или вообще невозможно. Все это существенно сдерживает внедрение биологических методов утилизации такого рода отходов.

Однако биологические методы переработки имеют целый ряд преимуществ перед термическими (сжигание, пиролиз) и химическими (химическая трансформация, комплексообразование и т.д.).

1.     Высокая скорость и селективность ферментативных реакций.

2.     Разнообразие ферментов, позволяющее микроорганизмам утилизовать широкий круг субстратов и возможность их  приспособления (адаптации) к незнакомому субстрату за счет мутаций. Так недавно были обнаружены плесневые грибы, использующие в качестве источника питания фторопласт (тефлон) – вещество устойчивое к воздействию практически любого агрессивного химического вещества за счет наличия в нем большого количества прочных связей C-F. Особенно интересным является тот факт, что в тефлоне отсутствуют связи С-Н и С-О-Н, расщепление которых служит источником энергии практически для всех живых существ (гликолиз, цикл Кребса и др.). Предполагается, что энергию эти микроорганизмы получают за счет расщепления связи С-С линейной молекулы тефлона.

3.     Возможность конструирования с помощью методов генной инженерии специальных микроорганизмов – деструкторов, оптимизированных для усвоения тех или иных конкретных соединений.

4.     Меньшая стоимость переработки (затраты на оборудование, энергию, воду).

5.     Большая экологическая безопасность.  

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями