Нужна помощь в написании работы?

Эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путем последовательного подбора, комбинирования и вариации искомых параметров с применением механизмов, напоминающих биологическую эволюцию. Является разновидностью эволюционных вычислений (англ. evolutionary computation. Отличительной особенностью генетических алгоритмов является акцент на использование оператора «скрещивания», который производит операцию рекомбинации решений-кандидатов, аналогичную скрещиванию в живой природе. Основоположником теории генетических алгоритмов считается Джон Холланд (англ. John Holland), книга которого «Адаптация в естественных и искусственных системах» (1992)является основополагающим трудом в данной области.

Генетический алгоритм был получен в процессе обобщения и имитации в искусственных системах таких свойств живой природы, как естественный отбор, приспособляемость к изменяющимся условиям среды, наследование потомками жизненно важных свойств от родителей и т.д. Так как алгоритм в процессе поиска использует некоторую кодировку множества параметров вместо самих параметров, то он может эффективно применяться для решения задач дискретной оптимизации, определённых как на числовых множествах, так и на конечных множествах произвольной природы. Поскольку для работы алгоритма в качестве информации об оптимизируемой функции используются лишь её значения в рассматриваемых точках пространства поиска и не требуется вычислений ни производных, ни каких-либо иных характеристик, то данный алгоритм применим к широкому классу функций, в частности, не имеющих аналитического описания. Использование набора начальных точек позволяет применять для их формирования различные способы, зависящие от специфики решаемой задачи, в том числе возможно задание такого набора непосредственно человеком.

Сила генетических алгоритмов в том, что этот метод очень гибок, и, будучи построенным в предположении, что об окружающей среде нам известен лишь минимум информации (как это часто бывает для сложных технических систем), алгоритм успешно справляется с широким кругом проблем, особенно в тех задачах, где не существует общеизвестных алгоритмов решения или высока степень априорной неопределенности.

Эволюционная теория утверждает, что каждый биологический вид целенаправленно развивается и изменяется для того, чтобы наилучшим образом приспособиться к окружающей среде. В процессе эволюции многие виды насекомых и рыб приобрели защитную окраску, еж стал неуязвимым благодаря иглам, человек стал обладателем сложнейшей нервной системы. Можно сказать, что эволюция - это процесс оптимизации всех живых организмов. Рассмотрим, какими же средствами природа решает эту задачу оптимизации.

Основной механизм эволюции - это естественный отбор. Его суть состоит в том, что более приспособленные особи имеют больше возможностей для выживания и размножения и, следовательно, приносят больше потомства, чем плохо приспособленные особи. При этом благодаря передаче генетической информации (генетическому наследованию) потомки наследуют от родителей основные их качества. Таким образом, потомки сильных индивидуумов также будут относительно хорошо приспособленными, а их доля в общей массе особей будет возрастать. После смены нескольких десятков или сотен поколений средняя приспособленность особей данного вида заметно возрастает.

Чтобы сделать понятными принципы работы генетических алгоритмов, поясним также, как устроены механизмы генетического наследования в природе. В каждой клетке любого животного содержится вся генетическая информация этой особи. Эта информация записана в виде набора очень длинных молекул ДНК (ДезоксирибоНуклеиновая Кислота). Каждая молекула ДНК - это цепочка, состоящая из молекул нуклеотидов четырех типов, обозначаемых А, T, C и G. Собственно, информацию несет порядок следования нуклеотидов в ДНК. Таким образом, генетический код индивидуума - это просто очень длинная строка символов, где используются всего 4 буквы. В животной клетке каждая молекула ДНК окружена оболочкой - такое образование называется хромосомой.

Каждое врожденное качество особи (цвет глаз, наследственные болезни, тип волос и т.д.) кодируется определенной частью хромосомы, которая называется геном этого свойства. Например, ген цвета глаз содержит информацию, кодирующую определенный цвет глаз. Различные значения гена называются его аллелями.

При размножении животных происходит слияние двух родительских половых клеток и их ДНК взаимодействуют, образуя ДНК потомка. Основной способ взаимодействия - кроссовер (cross-over, скрещивание). При кроссовере ДНК предков делятся на две части, а затем обмениваются своими половинками.

При наследовании возможны мутации из-за радиоактивности или других влияний, в результате которых могут измениться некоторые гены в половых клетках одного из родителей. Измененные гены передаются потомку и придают ему новые свойства. Если эти новые свойства полезны, они, скорее всего, сохранятся в данном виде - при этом произойдет скачкообразное повышение приспособленности вида.

Что такое генетический алгоритм

Пусть дана некоторая сложная функция (целевая функция), зависящая от нескольких переменных, и требуется найти такие значения переменных, при которых значение функции максимально. Задачи такого рода называются задачами оптимизации и встречаются на практике очень часто.

Один из наиболее наглядных примеров - задача распределения инвестиций. В этой задаче переменными являются объемы инвестиций в каждый проект (10 переменных), а функцией, которую нужно максимизировать - суммарный доход инвестора. Также даны значения минимального и максимального объема вложения в каждый из проектов, которые задают область изменения каждой из переменных.

Попытаемся решить эту задачу, применяя известные нам природные способы оптимизации. Будем рассматривать каждый вариант инвестирования (набор значений переменных) как индивидуума, а доходность этого варианта - как приспособленность этого индивидуума. Тогда в процессе эволюции (если мы сумеем его организовать) приспособленность индивидуумов будет возрастать, а значит, будут появляться все более и более доходные варианты инвестирования. Остановив эволюцию в некоторый момент и выбрав самого лучшего индивидуума, мы получим достаточно хорошее решение задачи.

Генетический алгоритм - это простая модель эволюции в природе, реализованная в виде компьютерной программы. В нем используются как аналог механизма генетического наследования, так и аналог естественного отбора. При этом сохраняется биологическая терминология в упрощенном виде.

Вот как моделируется генетическое наследование:

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Хромосома

Вектор (последовательность) из нулей и единиц.
Каждая позиция (бит) называется геном.

Индивидуум = генетический код

Набор хромосом = вариант решения задачи.

Кроссовер

Операция, при которой две хромосомы обмениваются своими частями.

Мутация

Cлучайное изменение одной или нескольких позиций в хромосоме.

Чтобы смоделировать эволюционный процесс, сгенерируем вначале случайную популяцию - несколько индивидуумов со случайным набором хромосом (числовых векторов). Генетический алгоритм имитирует эволюцию этой популяции как циклический процесс скрещивания индивидуумов и смены поколений. генетические алгоритмыЖизненный цикл популяции - это несколько случайных скрещиваний (посредством кроссовера) и мутаций, в результате которых к популяции добавляется какое-то количество новых индивидуумов. Отбор в генетическом алгоритме - это процесс формирования новой популяции из старой, после чего старая популяция погибает. После отбора к новой популяции опять применяются операции кроссовера и мутации, затем опять происходит отбор, и так далее.

Отбор в генетическом алгоритме тесно связан с принципами естественного отбора в природе следующим образом:

Приспособленность индивидуума

Значение целевой функции на этом индивидууме.

Выживание наиболее
приспособленных

Популяция следующего поколения формируется в соответствии с целевой функцией. Чем приспособленнее индивидуум, тем больше вероятность его участия в кроссовере, т.е. размножении.

Таким образом, модель отбора определяет, каким образом следует строить популяцию следующего поколения. Как правило, вероятность участия индивидуума в скрещивании берется пропорциональной его приспособленности. Часто используется так называемая стратегия элитизма, при которой несколько лучших индивидуумов переходят в следующее поколение без изменений, не участвуя в кроссовере и отборе. В любом случае каждое следующее поколение будет в среднем лучше предыдущего. Когда приспособленность индивидуумов перестает заметно увеличиваться, процесс останавливают и в качестве решения задачи оптимизации берут наилучшего из найденных индивидуумов.

Возвращаясь к задаче оптимального распределения инвестиций, поясним особенности реализации генетического алгоритма в этом случае.
Индивидуум = вариант решения задачи = набор из 10 хромосом Хj
Хромосома Хj= объем вложения в проект j = 16-разрядная запись этого числа
Так как объемы вложений ограничены, не все значения хромосом являются допустимыми. Это учитывается при генерации популяций.
Так как суммарный объем инвестиций фиксирован, то реально варьируются только 9 хромосом, а значение 10-ой определяется по ним однозначно.
Ниже приведены результаты работы генетического алгоритма для трех различных значений суммарного объема генетический алгоритминвестиций K.

Цветными квадратами на графиках прибылей отмечено, какой объем вложения в данный проект рекомендован генетическим алгоритмом.
Видно, что при малом значении K инвестируются только те проекты, которые прибыльны при минимальных вложениях.

Если увеличить суммарный объем инвестиций, становится прибыльным вкладывать деньги и в более дорогостоящие проекты.

При дальнейшем увеличении K достигается порог максимального вложения в прибыльные проекты, и инвестирование в малоприбыльные проекты опять приобретает смысл.

Особенности генетических алгоритмов

Генетический алгоритм - новейший, но не единственно возможный способ решения задач оптимизации. С давних пор известны два основных пути решения таких задач - переборный и локально-градиентный. У этих методов свои достоинства и недостатки, и в каждом конкретном случае следует подумать, какой из них выбрать.

Рассмотрим достоинства и недостатки стандартных и генетических методов на примере классической задачи коммивояжера (TSP - travelling salesman problem). Суть задачи состоит в том, чтобы найти кратчайший замкнутый путь обхода нескольких городов, заданных своими координатами. Оказывается, что уже для 30 городов поиск оптимального пути представляет собой сложную задачу, побудившую развитие различных новых методов (в том числе нейросетей и генетических алгоритмов).

Каждый вариант решения (для 30 городов) - это числовая строка, где на j-ом месте стоит номер j-ого по порядку обхода города. Таким образом, в этой задаче 30 параметров, причем не все комбинации значений допустимы. Естественно, первой идеей является полный перебор всех вариантов обхода.

Переборный метод наиболее прост по своей сути и тривиален в программировании. Для поиска оптимального решения (точки максимума целевой функции) требуется последовательно вычислить значения целевой функции во всех возможных точках, запоминая максимальное из них. Недостатком этого метода является большая вычислительная стоимость. В частности, в задаче коммивояжера потребуется просчитать длины более 1030 вариантов путей, что совершенно нереально. Однако, если перебор всех вариантов за разумное время возможен, то можно быть абсолютно уверенным в том, что найденное решение действительно оптимально.

Второй популярный способ основан на методе градиентного спуска. При этом вначале выбираются некоторые случайные значения параметров, а затем эти значения постепенно изменяют, добиваясь наибольшей скорости роста целевой функции. Достигнув локального максимума, такой алгоритм останавливается, поэтому для поиска глобального оптимума потребуются дополнительные усилия.

Градиентные методы работают очень быстро, но не гарантируют оптимальности найденного решения. Они идеальны для применения в так называемых унимодальных задачах, где целевая функция имеет единственный локальный максимум (он же - глобальный). Легко видеть, что задача коммивояжера унимодальной не является.

Типичная практическая задача, как правило, мультимодальна и многомерна, то есть содержит много параметров. Для таких задач не существует ни одного универсального метода, который позволял бы достаточно быстро найти абсолютно точное решение.


Однако, комбинируя переборный и градиентный методы, можно надеяться получить хотя бы приближенное решение, точность которого будет возрастать при увеличении времени расчета.

Генетический алгоритм представляет собой именно такой комбинированный метод. Механизмы скрещивания и мутации в каком-то смысле реализуют переборную часть метода, а отбор лучших решений - градиентный спуск. На рисунке показано, что такая комбинация позволяет обеспечить устойчиво хорошую эффективность генетического поиска для любых типов задач.

генетический алгоритм

Если на некотором множестве задана сложная функция от нескольких переменных, то генетический алгоритм - это программа, которая за разумное время находит точку, где значение функции достаточно близко к максимально возможному. Выбирая приемлемое время расчета, мы получим одно из лучших решений, которые вообще возможно получить за это время.

Итак, Генетические алгоритмы - универсальные алгоритмы поиска, основанные на принципе развития, наблюдаемого в природе, сочетают в себе лучшие качества известных методов оптимизации, такие как высокая скорость работы при независимости от свойств используемого критерия оптимизации (например, гладкости функции). Они обеспечивают поиск оптимального значения параметров в широкой области их значений. Название – Генетические Алгоритмы – связано с тем, что они работают аналогично естественному отбору в природе. Поэтому в описаниях этих алгоритмов используются термины из биологии и генетики, такие как – Ген, Хромосома, Фитнесс, Популяция и другие.

Работа алгоритма напоминает случайный перебор, методом Монте-Карло. Но, в отличие от метода Монте-Карло, перебор делается не совсем случайно, а целенаправленно. Задача алгоритма получить некоторое количество экземпляров (популяцию) с наилучшими значениями фитнесса (критерия оптимизации). Работу генетического алгоритма можно рассматривать как «выращивание» наилучшей популяции Механических Торговых Систем, наиболее приспособленных к успешной и устойчивой работе, согласно заданному нами критерию-фитнессу. Для множества проблем, генетические алгоритмы очень часто могут находить хорошие решения (почти оптимальные) приблизительно в 100 поколениях. Это во много раз быстрее чем полный перебор. Например, хромосома, содержащая 32 двойных гена имела бы 4,294,967,296 возможных комбинаций при использовании полного перебора. С помощью генетического алгоритма такая же проблема будет решена перебором 5000 возможных комбинаций (100 эпох, с размером 50).

Схема функционирования генетического алгоритма

Теперь, зная как интерпретировать значения генов, перейдем к описанию функционирования генетического алгоритма. Рассмотрим схему функционирования генетического алгоритма в его классическом варианте.

1.                       Инициировать начальный момент времени t=0. Случайным образом сформировать начальную популяцию, состоящую из k особей. B0 = {A1,A2,…,Ak)

2.                       Вычислить приспособленность каждой особи FAi = fit(Ai) , i=1…k и популяции в целом Ft = fit(Bt) (также иногда называемую термином фиттнес). Значение этой функции определяет насколько хорошо подходит особь, описанная данной хромосомой, для решения задачи.

3.                       Выбрать особь Ac из популяции. Ac = Get(Bt)

4.                       С определенной вероятностью (вероятностью кроссовера Pc) выбрать вторую особь из популяции Аc1 = Get(Bt) и произвести оператор кроссовера Ac = Crossing(Ac,Ac1).

5.                       С определенной вероятностью (вероятностью мутации Pm) выполнить оператор мутации. Ac = mutation(Ac).

6.                       С определенной вероятностью (вероятностью инверсии Pi) выполнить оператор инверсии Ac = inversion(Ac).

7.                       Поместить полученную хромосому в новую популяцию insert(Bt+1,Ac).

8.                       Выполнить операции, начиная с пункта 3, k раз.

9.                       Увеличить номер текущей эпохи t=t+1.

10.                    Если выполнилось условие останова, то завершить работу, иначе переход на шаг 2.

Теперь рассмотрим подробнее отдельные этапы алгоритма.

Наибольшую роль в успешном функционировании алгоритма играет этап отбора родительских хромосом на шагах 3 и 4. При этом возможны различные варианты. Наиболее часто используется метод отбора, называемый рулеткой. При использовании такого метода вероятность выбора хромосомы определяется ее приспособленностью, то есть PGet(Ai) ~ Fit(Ai)/Fit(Bt). Использование этого метода приводит к тому, что вероятность передачи признаков более приспособленными особями потомкам возрастает. Другой часто используемый метод – турнирный отбор. Он заключается в том, что случайно выбирается несколько особей из популяции (обычно 2) и победителем выбирается особь с наибольшей приспособленностью. Кроме того, в некоторых реализациях алгоритма применяется так называемая стратегия элитизма, которая заключается в том, что особи с наибольшей приспособленностью гарантировано переходят в новую популяцию. Использование элитизма обычно позволяет ускорить сходимость генетического алгоритма. Недостаток использования стратегии элитизма в том, что повышается вероятность попадания алгоритма в локальный минимум.

Другой важный момент – определение критериев останова. Обычно в качестве них применяются или ограничение на максимальное число эпох функционирования алгоритма, или определение его сходимости, обычно путем сравнивания приспособленности популяции на нескольких эпохах и остановки при стабилизации этого параметра.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями