Констатация того, что мир есть множество взаимодействующих систем, ещё не является радикальным решением проблемы познания сложной природы. Окружающий мир крайне многообразен, и требуется найти способ как-то ориентироваться в этом многообразии. Поэтому в рамках ОТС были предприняты многократные попытки разработать классификацию систем, что, в общем-то, не решено и по сегодняшний день. В качестве примера можно привести классификацию С. Бира. Он предложил различать простые, сложные и очень сложные системы на основании количества входящих в них элементов и способов их взаимодействия. Было также предложено учитывать определённость или неопределённость поведения систем путём их деления на детерминированные и вероятностные (табл.7.1).
Таблица 7.1
Классификация систем по С. Биру
Системы |
Простые |
Сложные |
Очень |
Детерминированные |
Оконная задвижка, |
Цифровая ЭВМ, |
Нет |
Вероятностные |
Подбрасываемая монета, движение медузы, статистический контроль качества |
Условный |
Крупная фирма, экономика государства, мозг Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.
|
Детерминированными называются системы, которые после строго определённого повторяемого воздействия всегда оказываются в одном и том же строго определённом состоянии.
Вероятностными являются системы, которые при одном и том же строго определённом повторяемом воздействии могут оказываться в разных состояниях. Указать, в каком состоянии они окажутся в каждом конкретном случае, невозможно. Можно только указать множество возможных состояний и вероятность каждого состояния.
Вполне понятно, что подобная классификация не является строгой. Нельзя точно определить, какие системы следует считать простыми, а какие сложными. Например, система из 10 элементов, судя по их количеству, может быть отнесена к простым. Но если взаимодействие этих элементов описывается с помощью теории графов (п.6.3), то теоретически возможное количество состояний системы определяется величиной 290 (≈ 1027).
Кроме того, даже строгое определение детерминированных и вероятностных систем может оказаться на практике не соответствующим действительности. Например, такая явно детерминированная система, как дверной замок в случае большого износа может в результате воздействия ключа не всегда переходить из состояния «открыто» в состояние «закрыто» (или наоборот). Разболтанный замок может оказаться системой вероятностной. В то же время можно теоретически допустить возможность создания механизма, который настолько точно будет подбрасывать монету, что она практически всегда будет падать на одну и ту же сторону. Здесь мы лишний раз убеждаемся, что любая строгая теория действует только в рамках определённых ограничений, в пределах которой справедливы заложенные в теорию постулаты (аксиомы).
Поможем написать любую работу на аналогичную тему