Нужна помощь в написании работы?

На характер механизма сопротивления при турбулентном режиме оказывает также значительное влияние пограничная геометрия потока, под которой в данном случае понимаются геометрические характеристики поверхности трубы (высота выступов шероховатости, их форма, взаимное расположение на поверхности и др.). Поверхности стенок трубопроводов имеют различную шероховатость. Высота выступов шероховатости называется абсолютной шероховатостью (). Так как промышленные трубопроводы обладают неравномерной высотой выступов, то пользуются понятием эквивалентной шероховатости, под которой понимают такую условно равномерную шероховатость, при которой потери напора в трубопроводе такие же, как и при естественной шероховатости. Эквивалентная шероховатость определяется при гидравлических испытаниях трубопроводов. Измерения скоростей показывают, что при переходе к турбулентному режиму у стенок сохраняется очень тонкий слой жидкости, в котором частицы, подторможенные и направленные стенками, сохраняют слоистый характер движения (так называемый ламинарный подслой). Поэтому профиль осредненных скоростей имеет два значительно различающихся участка (рис.). В турбулентном ядре благодаря интенсивному поперечному перемешиванию и выравниванию скоростей частиц осредненные скорости изменяются сравнительно слабо и их распределение по основной части сечения оказывается значительно более равномерным, чем при ламинарном режиме (ядро потока представляет так называемый турбулентный пограничный слой). В пределах ламинарного подслоя происходит весьма резкое падение скоростей от большого значения на его границе до нуля на стенке. Толщина  ламинарного подслоя чрезвычайно мала (сотые и тысячные доли диаметра трубопровода) и уменьшается с увеличением числа Рейнольдса. Между турбулентным ядром и ламинарным подслоем имеется тонкий переходной участок, в котором по мере приближения к подслою происходит резкое уменьшение турбулентных пульсаций и более интенсивное снижение осредненных скоростей. Поэтому, так как характеристики потока меняются по радиусу непрерывно, установить границы между этими участками можно только с известной условностью.

Приближенно толщину ламинарной пленки можно определить по формуле

,                                       (6.5)

где - коэффициент гидравлического трения; d- диаметр трубопровода;

Если толщина ламинарного подслоя значительно больше высоты выступов шероховатости (рис. 6.2, а), то они плавно обтекаются с очень малыми скоростями и, как в случае ламинарного движения, не влияют на распределение скоростей и сопротивление трения (область гидравлически гладких труб).

По мере возрастания Re толщина ламинарного подслоя быстро уменьшается и становится близкой к высоте  выступов шероховатости. Последние при этом начинают выступать за пределы ламинарного подслоя и, вызывая дополнительные вихреобразования в потоке, начинают сказываться на величине гидравлического сопротивления, увеличивая турбулентность потока (область неполной шероховатости, рис.). При больших значениях Re толщина ламинарного подслоя становится настолько малой (), что выступы шероховатости почти полностью оказываются в турбулентном ядре потока (область гидравлически шероховатых труб, рис.). Обтекание выступов происходит с интенсивным отрывом вихрей, которые попадают в центральную часть потока и усиливают турбулентность. При этом влияние сил вязкости на гидравлическое сопротивление становится весьма малым, а основную роль играют инерционные силы.

Поделись с друзьями