Нужна помощь в написании работы?

Как показывают исследования, при ламинарном течении жидкости в круглой трубе максимальная скорость находится на оси трубы. У стенок трубы скорость равна нулю, т.к. частицы жидкости покрывают внутреннюю поверхность трубопровода тонким неподвижным слоем. От стенок трубы к ее оси скорости нарастают плавно. График распределения скоростей по поперечному сечению потока представляет собой параболоид вращения, а сечение параболоида осевой плоскостью - квадратичную параболу.

Описание: 4a5

Рисунок

7.3 Схема для рассмотрения ламинарного потока

Уравнение, связывающее переменные  и , имеет следующий вид:

где P1 и P2 - давления соответственно в сечениях 1 и 2.

У стенок трубы величина r = R, , значит скорость υ = 0, а при r = 0 (на оси потока) скорость будет максимальной

Теперь определим расход жидкости при ламинарном течении в круглой трубе. Так как эпюра распределения скоростей в круглой трубе имеет вид параболоида вращения с максимальным значением скорости в центре трубы, то расход жидкости численно равен объему этого параболоида. Определим этот объем.

Максимальная скорость дает высоту параболоида

Как известно из геометрии, объем параболоида высотой h и площадью  равен

а в нашем случае

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Если вместо R подставить диаметр трубы d, то

Расход в трубе можно выразить через среднюю скорость:

откуда

Для определения потерь напора при ламинарном течении жидкости в круглой трубе рассмотрим участок трубы длиной l, по которому поток течет в условиях ламинарного режима.

Потеря давления в трубопроводе будет равна

Если в формуле динамический коэффициент вязкости  заменить через кинематический коэффициент вязкости  и плотность  () и разделить обе части равенства на удельный вес жидкости , то получим:

Так как левая часть полученного равенства равна потерям напора hпот в трубе постоянного диаметра, то окончательно это равенство примет вид:

Уравнение может быть преобразовано в универсальную формулу Дарси‑Вейсбаха, которая окончательно записывается так:

где  - коэффициент гидравлического трения, который для ламинарного потока вычисляется по выражению:

Однако при ламинарном режиме для определения коэффициента гидравлического трения  Т.М. Башта рекомендует при Re < 2320 применять формулу

Поделись с друзьями