Нужна помощь в написании работы?

Человеческий мозг – это самая сложная из всех известных живых структур. Нервной системе и, в первую очередь, головному мозгу принадлежит важнейшая роль в координации поведенческих, биохимических, физиологических процессов в организме. С помощью нервной системы организм воспринимает изменения внешней среды и на них реагирует. Головной мозг является орудием познавательной деятельности человека и вопрос, как же работает человеческий мозг – остается одним из центральных в науке.

Нервная ткань состоит из нескольких типов клеток. Нейрон – это нервная клетка со всеми ее отростками. Для поддержания нормального функционирования нейрона существуют два механизма:

1. Трансверзальный транспорт веществ – обмен веществ из внеклеточного пространства.

2.              Лонгитудинальный транспорт – непрерывный обмен веществ между телом и отростками нейрона, касается, главным образом, репродукции нейроплазмы.

Функции аксонального плазматического тока

1.    Непрерывное возмещение составных частей нейрона в норме и при патологии.

2.    Освобождение веществ из нейрона в связи с синаптическим переносом, его трофическими и другими функциями.

3.    Транспорт трофических веществ из целевого органа в тело нейрона.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

4.    Передача метаболической информации между отдельными участками нейрона.

В аксональном транспорте участвуют как внутриклеточные органоиды (митохондрии, лизосомы, синаптические пузырьки, нейрофиламенты), так и отдельные метаболиты (липиды, нуклеотиды, гликопротеины, свободные аминокислоты и др.).

Вторым типом клеток нервной ткани является глия. Нейроглия – система клеток, непосредственно окружающих нервные клетки головного и спинного мозга и прямо не участвующих в специфической функции нервной ткани. Популяция клеток глии в ЦНС более чем в 10 раз превышает количество нейронов. Нейроглия специлизируется на выполнении вспомогательных, в отношении нейронов, функций: опорной, трофической, изоляционной, секреторной, защитной, поглощения химических медиаторов, участия в восстановлении и регенерации (глиальные клетки сохраняют способность к делению в течение всей жизни организма).

Методы раздельного биохимического анализа нейронов и глии:

1.    Метод микроманипуляций (1950-1960гг. – Хиден и Эндстрем в Швеции, Лоури в США).

2.    Метод количественной цитохимии – Касперсон, 30-е годы ХХ века.

3.    Метод обогащения фракций – Rose, 1965 г.

Гемато-энцефалический барьер (ГЭБ)

Большая часть стенок капилляров мозга (85-90%) покрыты выростами астроцитов, а остальная часть их поверхности окружена собственно телами глиальных клеток. Контакт между астроцитами и стенкой капилляров настолько тесен, что внешне поверхности мембран этих двух элементов как бы сливаются образуя двойную перегородку. Благодаря такой двойной перегородке возникает барьер, через который с трудом проникают многие растворимые в крови вещества. Морфологическую основу ГЭБ составляют – эндотелий сосудов мозга, периваскулярная базальная мембрана и плазматическая мембрана глиальных клеток. Интенсивность проникновения в мозг ряда веществ через ГЭБ определяется не только состоянием ГЭБ, но и интенсивностью функционирования и метаболизма ЦНС. Уровень деятельности и метаболизма нервной ткани является фактором, регулирующим функцию ГЭБ. С одной стороны, ГЭБ играет роль в защите головного мозга от экзогенных и эндогенных токсинов, циркулирующих в крови, а с другой – препятствуют «ускользанию» нейромедиаторов и других активных соединений из интерстициальной жидкости в кровь. Однако наиболее важной функцией ГЭБ, по видимо, является сохранение особой внутренней среды для головного мозга.

Общие особенности метаболизма нервной ткани

 

1.      Высокая интенсивность в сравнении с другими тканями.

2.      Поразительно высокий уровень обмена сохраняется при отсутствии большой функциональной активности – во время сна.

3.      Метаболизм в периферических нервных волокнах отличается от обмена самих нервных клеток.

4.      Общая интенсивность метаболизма в нервных волокнах низкая.

Обмен свободных аминокислот в головном мозге

 

Аминокислоты играют важную роль в метаболизме и функционировании ЦНС. Это объясняется не только исключительной ролью аминокислот как источников синтеза большого числа биологически важных соединений, таких как белки, пептиды, некоторые липиды, ряд гормонов, витаминов, биологически активных аминов. Аминокислоты и их дериваты участвуют в синаптической передаче, в осуществлении межнейрональных связей в качестве нейротрансмитеров и нейромодуляторов. Существенной является также их энергетическая значимость ибо аминокислоты глутаминовой группы непосредственно связаны с циклом трикарбоновых кислот. Обобщая данные об обмене свободных аминокислот в головном мозге, можно сделать следующие выводы:

1.    Большая способность нервной ткани поддерживать относительное постоянство уровней аминокислот.

2.    Содержание свободных аминокислот в головном мозге в 8 – 10 раз выше, чем в плазме крови.

3.    Существование высокого концентрационного градиента аминокислот между кровью и мозгом за счет избирательного активного переноса через ГЭБ.

4.    Высокое содержание глутамата, глутамина, аспарагиновой, N-ацетиласпарагиновой кислот и ГАМК. Они составляют 75 % пула свободных аминокислот головного мозга.

5.    Выраженная региональность содержания аминокислот в различных отделах мозга.

6.    Существование компартментализированных фондов аминокислот в различных субклеточных структурах нервных клеток.

7.    Ароматические аминокислоты имеют особое значение как предшественники катехоламинов и серотонина.

Нейропептиды

В последнее время значительно увеличился интерес к управлению важнейшими функциями мозга с помощью пептидов. Открыто достаточно большое количество пептидов, способных в очень низких концентрациях воздействовать на нервную ткань, выступая в качестве модуляторов ряда функций, а также действия нейромедиаторов, гормонов, фармакологических средств. С учетом преимущественной  локализации этих пептидов в ЦНС они получили название нейропептидов. По сравнению с другими системами межклеточной сигнализации, пептидная система оказалась наиболее многочисленной (сейчас открыто свыше 600 природных нейропептидов) и полифункциональной.

Нейропептиды представляют собой малые и средние по размеру пептиды, как правило, линейные, содержащие от 2 до 40-50 аминокислотных остатков. Часть нейропептидов модифицирована по концевым аминокислотам. Нейропептиды – это межклеточные передатчики информации. Они выполняют, нередко одновременно, функции нейромедиаторов, нейромодуляторов и дистантных регуляторов. Нейропептиды (вместе с другими регуляторными соединениями) образуют функционально непрерывную систему, функциональной континуум. Каждый нейропептид обладает своеобразным комплексом биологических активностей. Нейропептиды синтезируются путем протеолиза больших пептидов- предшественников в нейронах и сосредотачиваются в везикулах нервных окончаний. Срок полураспада большинства нейропептидов варьирует от минут (для олигопептидов) до часов (для пептидов среднего размера). Существует сложная иерархическая система, в которой одни нейропептиды индуцируют или подавляют выход других нейропептидов. При этом сами нейропептиды-индукторы обладают, кроме того, способностью непосредственно вызывать ряд биохимических и физиологических эффектов.

Энергетический обмен в нервной ткани

Характерными чертами энергетического обмена в ткани головного мозга являются:

1.    Высокая его интенсивность в сравнении с другими тканями.

2.    Большая скорость потребления кислорода и глюкозы из крови. Головной мозг человека, на долю которого приходится 2% от массы тела, потребляет до 20%  всего кислорода, используемого организмом в покое.

3.    Потребление кислорода серым веществом на 30–50% выше, чем белым. Периферические нервы используют в 30 раз меньше кислорода, чем эквивалентное по массе количество ткани из ЦНС.

4.    Различная скорость потребления кислорода отдельными регионами ЦНС: кора больших полушарий > мозжечок > промежуточный мозг > средний и продолговатый мозг > спинной мозг.

5.    Нейроны отличаются более интенсивным дыханием, чем глиальные клетки. В коре больших полушарий 70% от общего поглощения кислорода приходится на нейроны и 30% на глиальные клетки.

6.    Невозможность замены основного энергетического субстрата, глюкозы, другими соединениями, интенсивно окисляющимися в других тканях.

7.    Приблизительно 70% всей производимой в мозге АТФ расходуется на поддержание ионных градиентов между содержимым нервных клеток и окружающей средой.

Особенности углеводного обмена в ткани головного мозга

1.       Функциональная активность мозга в наибольшей степени зависит от обмена углеводов.

2.       Головной мозг в качестве энергетического материала использует почти исключительно глюкозу.

3.       Доминирующим путем метаболизма глюкозы в нервной ткани является аэробный гликолиз.

4.       Важная роль для метаболизма мозга гексокиназы, как основного механизма вовлечения глюкозы в гликолиз.

5.       Существование единого функционального комплекса из двух ферментов гликолиза – гексокиназы и фосфофруктокиназы, синхронно однонаправленно регулируемых пулом адениловых нуклеотидов.

Липидный обмен в нервной ткани

Липидный состав головного мозга уникален не только по высокой концентрации общих липидов, но и по содержанию здесь их отдельных фракций. Почти все липиды головного мозга представлены тремя главными фракциями: глицерофосфолипидами, сфинголипидами и холестеролом, который всегда обнаруживается в свободном, а не эстерифицированном состоянии, характерном для большинства других тканей.

Обмен липидов в нервной ткани имеет следующие особенности

 

-                 мозг обладает высокий способностью синтезировать жирные кислоты;

-                 в мозге практически не происходит β-окисления жирных кислот;

-                 скорость липогенеза в головном мозге неодинакова в различные сроки постнатального периода;

-                 постоянство состава липидов в зрелом мозге подтверждает низкую скорость их обновления в целом;

-                 фосфатидилхолин и фосфатидилинозит обновляются в ткани мозга быстро;

-                 скорость синтеза холестерола в мозге высока в период его формирования. С возрастом активность этого процесса уменьшается;

-                 синтез цереброзидов и сульфатидов протекает наиболее активно в период миелинизации.

В зрелом мозге 90 % всех цереброзидов находятся в миелиновых оболочках, тогда как ганглиозиды – типичные компоненты нейронов.

 

Роль медиаторов в передаче нервных импульсов

Большинство синапсов в нервной системе млекопитающих является химическими. Процесс передачи сигнала в химическом синапсе осуществляется посредством освобождения нейромедиаторов из пресинаптических нервных окончаний. К нейромедиаторам относятся в настоящее время 4 группы веществ: моноамины, аминокислоты, пуриновые нуклеотиды, пептиды. В индивидуальном нейроне синтезируется, как правило, несколько нейромедиаторов различной химической природы. Кроме нейромедиаторов существует обширный класс соединений – нейромодуляторов, регулирующих уровень синаптической передачи.

Нейрохимические основы памяти

Память – сложный и еще не достаточно изученный процесс, включающий фазы запечатления, хранения и извлечения поступающей информации. Все эти фазы тесно связаны между собой, и нередко их очень трудно разграничить при анализе функций памяти.

Виды биологической памяти: 1. Генетическая;
2. Эпигенетическая; 3. Иммунологическая; 4. Нейрологическая (ее иногда называют психической или индивидуальной). В настоящее время нейрологическую память делят на три этапа:
1. Кратковременная память (длительность от нескольких миллисекунд до нескольких минут). 2. Промежуточный (от нескольких секунд до нескольких часов). 3. Долговременная память (годы, десятилетия и в течение всей жизни).

Нейрологическая память обладает сложной системной организацией и не имеет строгой локализации в определенных участках мозга. По современным представлениям, следы памяти (энграммы) фиксируются в мозге в виде изменений состояния синаптического аппарата, в результате которых возникает предпочтительное проведение возбуждения по определенным нервным путям.

После восприятия информации, в процессе ее запечатления и фиксации, в мозге протекает ряд последовательно сменяющихся нейрохимических процессов. На первых этапах, в стадии кратковременной памяти происходят изменения «быстрых» функций синапса, связанных с выбросом и сдвигом концентрации «классических» и пептидных медиаторов. В дальнейшем, в течение периода от нескольких секунд до нескольких суток происходит вовлечение широкого спектра нейрохимических процессов, включающих изменения в составе и структуре нейроспецифических белков, в частности изменения степени их фосфорилирования, а также модификацию синтеза РНК.

Для формирования пожизненной долговременной памяти необходим постоянный синтез новых биополимеров, который может быть осуществлен в случае устойчивых перестроек в функционировании участков генома. Последние могут происходить в результате либо структурных изменений ДНК, либо образования устойчивых циклов для постоянного синтеза репрессоров или дерепрессоров транскриптонов. Возможно также, что в формировании долговременной памяти принимают участие иммунологические механизмы, благодаря которым в мозге синтезируются антителоподобные соединения, способные в течение длительного времени модифицировать деятельность синапсов в определенных нервных путях. В механизмах формирования памяти принимают участие как «классические» медиаторы, так и большое число нейропептидов, выполняющих функции медиаторов и нейромодуляторов.

Спинномозговая жидкость (ликвор или цереброспинальная жидкость)

Общее количество ликвора у взрослого человека составляет 100-150 мл, у детей 80 – 90 мл. Скорость образования ликвора колеблется в пределах 350-750 мл/сутки. Обновляется ликвор 3 – 7 раз в сутки, чаще всего 3,5 раза.

 

Распределение ликвора в ликворной системе:

  • боковые желудочки – 20-30 мл
  • 3 и 4 желудочки – 3-5 мл
  • подпаутинное пространство головного мозга – 20-30 мл
  • подпаутинное пространство спинного мозга – 50-70 мл

Функции спинномозговой жидкости:

1.      Механическая защита мозга.

2.      Экскреторная функция – выведение метаболитов из мозга.

3.      Транспорт различных биологически активных веществ.

4.      Контроль окружающей среды мозга:

  • буферная роль при быстрых изменениях состава крови;
  • регуляция оптимальной концентрации ионов и рН для обеспечения нормальной возбудимости ЦНС;
  • является специальным защитным иммунобиологическим барьером.

Таблица 32. 1.

Состав спинномозговой жидкости

Показатель

Концентрация

Количество

Прозрачность

Вода

Плотный осадок

Органические в-ва

Белок общий

Альбумины

Глобулины

Глюкоза

Неорганические в-ва

Натрий

Калий

Хлориды

Кальций

100 – 150 мл

Бесцветная, прозрачная

99 %

1% - 10 г/л

2 – 2,4 г/л

0,15 – 0,33 г/л

0,12 – 0,26 г/л

0,03 – 0,06 г/л

2,50 – 4,15 ммоль/л

7,6 – 8,0 г/л

135 – 150 ммоль/л

2,3 – 4,3 ммоль/л

120 – 130 ммоль/л

1,2 – 1,6 ммоль/л

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями