Нужна помощь в написании работы?

Весы́— устройство или прибор для определения массы тел по действующему на них весу, приближёно считая его равным силе тяжести. Вес тела может быть определён как через сравнение с весом эталонной массы (как в рычажных весах), так и через измерение этой силы через другие физические величины.

Согласно ГОСТ весы можно подразделить на следующие группы:

По точности взвешивания:

  • среднего класса точности;
  • обычного класса точности.

По способу установки на месте эксплуатации:

  • встроенные;
  • врезные;
  • напольные;
  • настольные;
  • передвижные;
  • подвесные;
  • стационарные.

По виду уравновешивающего устройства:

  • электромеханические (электронные);
  • механические.

По способу достижения положения равновесия:

  • с автоматическим уравновешиванием;
  • с полуавтоматическим уравновешиванием;
  • с неавтоматическим уравновешиванием.

По классу точности

  • специальный;
  • высокий;
  • средний.

Основные параметры весов

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

 Наибольший предел взвешивания (НПВ) — верхняя граница предела взвешивания, определяющая наибольшую массу, измеряемую при одноразовом взвешивании.

Наименьший предел взвешивания (НмПВ) — нижняя граница предела взвешивания, определяется минимальным грузом, при одноразовом взвешивании которого относительная погрешность взвешивания не должна превышать допустимого значения.

Цена деления d — разность значений массы, соответствующих двум соседним отметкам шкалы весов с аналоговым отсчетным устройством, или значение массы, соответствующее дискретности отсчета цифровых весов.

Цена поверочного деления e — условная величина, выраженная в единицах массы, используемая при классификации весов и нормировании требований к ним.

Разновес

Наборы гирь для определённых весов называются разновесом. В зависимости от максимальной и минимальной массы, взвешиваемой на весах, разновес может состоять из большего или меньшего числа элементов.

Современная, наиболее распространённая система численного ряда для разновесов была предложена Д. И. Менделеевым. Она обеспечивает минимальное число операций наложения/снятия гирь на чашки весов при подборе навески.

Точное взвешивание. — С большою точностью можно взвешивать только вполне не изменяемое в отношении веса тело, т. е. негигроскопичное (не притягивающее паров воды), не сгущающее газов в порах, не испаряющееся, или защищенное от изменений на время взвешивания помещением в легкие стеклянные или иные сосуды, закрытые или даже запаянные. Но так как гигроскопичность стеклянной поверхности может еще произвести ощутительную погрешность при взвешивании, то в химических работах тигли с осадками после прокаливания должны быть охлаждены в аппарате для высушивания (эксикатор) или под колоколом воздушного насоса.

  • Посуда химическая лабораторная –

изделия из стекла, кварца, фарфора, платины и др. материалов, применяемые для препаративных и химико-аналитических работ. Химическая посуда должна быть устойчива к воздействию химических реагентов, легко отмываться от загрязнений, а материал её должен быть термоустойчив и обладать малым коэффициентом теплового расширения. По назначению она может быть разделена на мерную, немерную и специального применения.

      Мерная химическая посуда имеет точную градуировку, её нельзя нагревать. Мерная посуда, как и вся химическая, лабораторная посуда различается по ёмкости, диаметру и формам. К ней относятся: пипетки — для отбора жидкостей (0,1—100 мл) и газов (от 100 мл и выше); бюретки (1—100 мл)для титрования, измерения точных объёмов (различают микробюретки, бюретки объёмные, весовые, поршневые, газовые); мерные колбы (10—2000 мл)для отмеривания и хранения определённых объёмов жидкостей: мерные мензурки и цилиндры (градуированы менее точно).

      К немерной, или общего назначения, химической посуде  относятся: изделия, употребляемые с нагревом, — пробирки (5—25 мл), стаканы (5—1000 мл), колбы (10—1000 мл, плоскодонные, круглодонные, конические), реторты (до 3 л): употребляемые без нагрева — пробирки (из толстостенного стекла) для центрифугирования, воронки для переливания и фильтрования жидкостей и делительные воронки (от 25 мл и выше, цилиндрические, грушевидные и шарообразные), кристаллизаторы (плоскодонные сосуды), холодильники для охлаждения и конденсации паров и собирания конденсата (специальные и универсальные), сифоны (различных форм и размеров, применяются для переливания жидкостей), водоструйные насосы (ускоряют фильтрование, создают при перегонке вакуум над кипящей жидкостью), склянки (служат в качестве резервуара, из которого жидкость поступает в др. сосуд, например в бюретки при титровании), бюксы с пришлифованными крышками (для хранения веществ), капельницы различного устройства (для дозировки жидкости).

        К химической посуде специального назначения относятся: колбы для дистилляции, аллонжи — изогнутые трубки (для соединения холодильника с приёмником), дефлегматоры (насадки, представляющие собой трубки с расширением и отводом в верхней части; применяются при фракционированной перегонке); колбы грушевидной формы, применяющиеся для определения азота ("колбы Кьельдаля"), эксикаторы для медленного высушивания и сохранения веществ, легко поглощающих влагу из воздуха, различного вида склянки для промывания газов с целью освобождения их от примесей, Киппа аппарат для получения лабораторных количеств газов (CO2, H2S и др.), трубки различной формы (например, хлоркальциевые U-образные) для сушки и очистки газов от механических загрязнений.

Наиболее распространённый материал для химической посуды — стекло; во многих случаях применяются и др. материалы. Кварцевая химическая посуда необходима при работе с особо чистыми веществами, а также для нагрева до 1200 °С, в том числе и под вакуумом. Платиновая химическая посуда используется главным образом при работе с фтористоводородной (плавиковой) кислотой. Платиновую химическую посуду не рекомендуется применять при работе с PbSO4, PbO2, SnO2, Bi2O3, Sb2O3, др. соединениями, способными легко восстанавливаться, при работе с серу- и фосфорсодержащими соединениями в присутствии восстановителей, при сплавлении богатых железом веществ, а также веществ, выделяющих галогены в присутствии окислителей, например царской водки. Тигли из золота и серебра удобны для сплавления различных веществ со щелочами при 900—1000 °C. Фарфоровая  химическая посуда. по сравнению со стеклянной более прочна и термостойка, но непрозрачна и тяжела. Помимо стаканов, чашек (для выпаривания) и тиглей, из фарфора изготовляют ступки, воронки Бюхнера, ложки-шпатели для отбора вещества, лодочки для прокаливания в печи. Для нагревания при 1200—3000 °С применяют тигли из высокоогнеупорных материалов (алунд, глинозём, корунд и др.).

  • Калибрование посуды.

Мерную посуду при выполнении точных измерений необходимо калибровать. Вследствие неодинакового внутреннего диаметра бюретки по всей длине  неравномерной толщины стенок пипетки, а иногда в результате ошибок, допущенных на фабрике-изготовителе, показания мерной посуды могут не соответствовать действительной вместимости. Перед проверкой бюретки, пипетки, пикнометры, мерные колбы тщательно моют, высушивают и охлаждают до комнатной температуры. Проверку пипеток, бюреток следует проводить при температуре, указанной на них. Взвешивание производят с точностью, соответствующей вместимости мерной посуды. Так, при калибровании бюреток, пипеток, мерных колб вместимостью 10... 100 мл массу

     Для проверки пипетки ее наполняют дистиллированной водой до метки, затем эту воду сливают в заранее' взвешенный бюкс и вновь взвешивают. При слнванни воды ее нельзя выдувать, меняя скорость истечения жидкости. Все измерения откалиброван-ной пипеткой проводят одинаково, точно так же, как это делалось при калибровании. Проверку проводят 3-4 раза, берут среднюю массу воды, находят в таблице ее плотность при температуре измерений и вычисляют объем.

     Мерную колбу или пикнометр взвешивают вместе с пробкой, наполняют дистиллированной водой до метки, закрывают и вновь взвешивают. Воду сливают, снова наливают до метки и опять взвешивают. Определение повторяют 3 - 4 раза, находят среднюю массу воды и по ее плотности при данной температуре вычисляют объем сосуда.

      У бюретки сначала проверяют полную вместимость, а затем уменьшают по 1 или по 5 мл. Например, у бюретки вместимостью 25 мл определяют массу всего объема, а затем 24, 23 мл и т. д., либо 20, 15 мл и т. д. в зависимости от требуемой точности. По полученным данным из 2-3 измерений составляют таблицу поправок.

  • Фильтрование

- это процесс разделения неоднородных систем (например, суспензия, аэрозоль) при помощи пористых перегородок, пропускающих дисперсионную среду и задерживающих дисперсную твёрдую фазу. Целью фильтрования в широком смысле слова является отделение жидкости от самых различных твердых примесей.

Все современные способы очистки можно разделить укрупненно на две группы: механические фильтры, являющиеся перфорированной перегородкой той или иной конструкции, и очистители в силовых полях (гравитационные, центробежные, магнитные, электростатические). Недостатком первых является малая грязеемкость, увеличение перепада давления по мере забивания отверстий или пор в перегородке, наличие байпасного клапана, перепускающего без очистки часть жидкости из линии загрязненной жидкости в линию очищенной жидкости, ограничения по степени загрязненности, подаваемой на очистку жидкостей, большие габаритные размеры, увеличивающиеся по мере увеличения пропускной способности или тонкости очистки, и др. Все это приводит к необходимости периодической замены или регенерации фильтрующего элемента, встройки сигнальных устройств и т.п. Следует попутно отметить, что запыленность окружающей среды зачастую настолько велика, что простая замена фильтроэлементов в гидросистемах вносит загрязнений больше, чем изнашивание за все время эксплуатации.

Поделись с друзьями