Нужна помощь в написании работы?

Регуляция  вдоха   и   выдоха . Смене дыхательных фаз способствуют сигналы, поступающие от механорецепторов легких по афферентным волокнам блуждающих нервов. При перерезке блуждающих нервов дыхание у животных становится более редким  и  глубоким. Следовательно, импульсы, поступающие от рецепторов легких обеспечивают смену  вдоха  на  выдох   и  смену  выдоха   вдохом .

В эпителиальном  и  субэпителиальном слоях всех воздухоносных путей, а также в области корней легких расположены так называемые ирритантные рецепторы, которые обладают одновременно свойствами механо-  и  хеморецепторов. Они раздражаются при сильных изменениях объема легких, часть этих рецепторов возбуждается при  вдохе   и   выдохе . Ирритантные рецепторы возбуждаются также под действием пылевых частиц, паров едких веществ  и  некоторых биологически активных веществ, например, гистамина. Однако, для  регуляции  смены  вдоха   и   выдоха  большее значение имеют рецепторы растяжения легких, которые чувствительны к растяжению легких.

Во время  вдоха , когда воздух начинает поступать в легкие, они растягиваются  и  рецепторы, чувствительные к растяжению возбуждаются. Импульсы от них по волокнам блуждающего нерва поступают в структуры продолговатого мозга к группе нейронов, составляющих дыхательный центр (ДЦ). Как показали исследовании в продолговатом мозге в его дорсальных  и  вентральных ядрах локализованы центр  вдоха   и   выдоха . От нейронов центра  вдоха  возбуждение поступает к мотонейронам спинного мозга, аксоны которых составляют диафрагмальный, наружные межреберные  и  межхрящевые нервы, иннервирующие дыхательные мышцы. Сокращение этих мышц еще больше увеличивает объем грудной клетки, воздух продолжает поступать-в альвеолы, растягивая их. Поток импульсов в дыхательный центр от рецепторов легких увеличивается. Таким образом,  вдох  стимулируется  вдохом .

Нейроны дыхательного центра продолговатого мозга как бы разделены (условно) на две группы. Одна группа нейронов дает волокна к мышцам, которые обеспечивают  вдох , эта группа нейронов получила название инспираторных нейронов (инспираторный центр), т. е. центр  вдоха . Другая же группа нейронов, отдающих волокна к внутренним межреберным, и ; межхрящевым мышцам, получила название экспираторных нейронов (экспираторный центр), т. е. центр  выдоха .

Нейроны экспираторного  и  инспираторного отделов дыхательного центра продолговатого мозга обладают различной возбудимостью  и  лабильностью. Возбудимость инспираторного отдела выше, поэтому его нейроны возбуждаются .при действии малой частоты импульсов, приходящих от рецепторов легких. Но по мере увеличения размеров альвеол во время  вдоха , частота импульсов от рецепторов легких все больше  и  больше нарастает  и  на высоте  вдоха  она настолько велика, что становится пессимальной для нейронов центра  вдоха , но оптимальной для нейронов центра  выдоха . Поэтому нейроны центра  вдоха  тормозятся, а нейроны центра  выдоха  возбуждаются. Таким образом,  регуляция  смены  вдоха   и   выдоха  осуществляется той частотой, которая идет по афферентным нервным волокнам от рецепторов легких к нейронам дыхательного центра.

Помимо инспираторных  и  экспираторных нейронов в каудальной части варолиева моста обнаружена группа клеток, получающих возбуждения от инспираторных нейронов  и  тормозящих активность экспираторных нейронов. У животных с перерезкой ствола мозга через середину варолиева моста дыхание становится редким, очень глубоким с остановками на некоторое время в фазе  вдоха , получивших название айпнезисов. Группа клеток, создающая подобный эффект, получила название апноэстического центра.

Дыхательный центр продолговатого мозга испытывает влияния со стороны вышележащих отделов ЦНС. Так, например, в передней части варолиева моста расположен пневмотаксический центр, который способствует периодической деятельности дыхательного центра, он увеличивает скорость развития инспираторной активности, повышает возбудимость механизмов выключения  вдоха , ускоряет наступление следующей инспирации.

Гипотеза пессимального механизма смены фазы  вдоха  фазой  выдоха  не нашла прямого экспериментального подтверждения в опытах с регистрацией клеточной активности структур дыхательного центра. Эти эксперименты позволили установить сложную функциональную организацию последнего. По современным представлениям возбуждение клеток инспираторного отдела продолговатого мозга активирует деятельность апноэстического  и  пневмотаксического центров. Апноэстический центр тормозит активность экспираторных нейронов, пневмотаксический - возбуждает. По мере усиления возбуждения инспираторных нейронов под влиянием импульсации от механо-  и  хеморецепторов усиливается активность пневмотаксического центра. Возбуждающие влияния на экспираторные нейроны со стороны этого центра к концу фазы  вдоха  становятся преобладающими над тормозными, приходящими со стороны апноэстического центра. Это приводит к возбуждению экспираторных нейронов, оказывающих тормозящие влияния на инспираторные клетки.  Вдох  тормозится, начинается  выдох .

По-видимому, существует самостоятельный механизм торможения  вдоха   и  на уровне продолговатого мозга. К этому механизму относят специальные нейроны (I бета), возбуждаемые импульсами от механорецепторов растяжения легких  и  инспираторно-тормозные нейроны, возбуждаемые активностью нейронов I бета. Таким образом, при увеличении импульсации от механорецепторов легких увеличивается активность I бета нейронов, что в определенный момент времени (к концу фазы  вдоха ) вызывает возбуждение инспираторно-тормозных нейронов. Их активность тормозит работу инспираторных нейронов.  Вдох  сменяется  выдохом .

В  регуляции  дыхания большое значение имеют центры гипоталамуса. Под влиянием центров гипоталамуса происходит усиление дыхания, например, при болевых раpдражениях, при эмоциональном возбуждении, при физической нагрузке.

В регуляции дыхания принимают участие полушария большого мозга, которые участвуют в тонком адекватном приспособлении дыхания к меняющимся условиям существования организма.

Нейроны дыхательного центра ствола мозга обладают автоматизмом, т. е. способностью к спонтанному периодическому возбуждению. Для автоматической деятельности нейронов ДЦ необходимо постоянное поступление к ним сигналов от хеморецепторов, а также от ретикулярной формации ствола мозга. Автоматическая деятельность нейронов ДЦ находится под выраженным произвольным контролем, который состоит в том, что человек может в широких пределах изменять частоту и глубину дыхания.

Деятельность дыхательного центра в значительной степени зависит от напряжения газов в крови и концентрации в ней водородных ионов. Ведущее значение в определении величины легочной вентиляции имеет напряжение углекислого газа в артериальнои-крови, оно как бы создает запрос на нужную величину вентиляции альвеол.

Содержание кислорода и особенно углекислого газа поддерживается на относительно постоянном уровне. Нормальное содержание кислорода в организме называется нормоксия, недостаток кислорода в организме и тканях - гипоксия, а недостаток кислорода в крови - гипоксемия. Увеличение напряжения кислорода в крови называется гипероксия.

Нормальное содержание углекислого газа в крови называется нормокапния, повышение содержания углекислого газа - гиперкапния, а снижение его содержания - гипокапния.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Нормальное дыхание в состоянии покоя называется эйпноэ. Гиперкапния, а также снижение величины рН крови (ацидоз) сопровождаются увеличением вентиляции легких - гиперпноэ, что приводит к выделению из организма избытка углекислого газа. увеличение вентиляции легких происходит за счет увеличения глубины и частоты дыхания.

Гипокапния и повышение уровня рН крови приводит к уменьшению вентиляции легких, а затем и к остановке дыхания - апноэ.

Углекислый газ, водородные ионы и умеренная гипоксия вызывают усиление дыхания за счет усиления деятельности дыхательного центра, оказывая влияние на специальные хеморецепторы. Хеморецепторы, чувствительные к увеличению напряжения углекислого газа и к снижению напряжения кислорода находятся в каротидных синусах и в дуге аорты. Артериальные хеморецепторы расположены в специальных маленьких тельцах, которые богато снабжены артериальной кровью. Большее значение для регуляции дыхания имеют каротидные хеморецепторы. При нормальном содержании кислорода в артериальной крови в афферентных нервных волокнах, отходящих от каротидных телец, регистрируются импульсы. При снижении напряжения кислорода частота импульсов возрастает особенно значительно. Кроме того, афферентные влияния с каротидных телец усиливаются при повышении в артериальной крови напряжения углекислого газа и концентрации водородных ионов. Хеморецепторы, особенно каротидных телец, информируют дыхательный центр о напряжении кислорода и углекислого газа в крови, которая направляется к мозгу.

В продолговатом мозге обнаружены центральные хеморецепторы, которые постоянно стимулируются водородными ионами, находящимися в спиномозговой жидкости. Они существенно изменяют вентиляцию легких Например, снижение рН спиномозговой жидкости на 0,01 сопровождается увеличением легочной вентиляции на 4 л/мин.

Импульсы, поступающие от центральных и периферических хеморецепторов, являются необходимым условием периодической активности нейронов дыхательного центра и соответствия вентиляции легких газовому составу крови. Последний является жесткой константой внутренней среды организма и поддерживается по принципу саморегуляции путем формирования функциональной системы дыхания. Системообразующим фактором этой системы является газовая константа крови. Любые ее изменения являются стимулами для возбуждения рецепторов, расположенных в альвеолах легких, в сосудах, во внутренних органах и т. д. Информация от рецепторов поступает в ЦНС, где осуществляется ее анализ и синтез, на основе которых формируются аппараты реакций. Их совокупная деятельность приводит к восстановлению газовой константы крови. В процесс восстановления этой константы включаются не только органы дыхания (особенно ответственные за изменение глубины и частоты дыхания), но и органы кровообращения, выделения и другие, представляющие в совокупности внутреннее звено саморегуляции. При необходимости включается и внешнее звено в виде определенных поведенческих реакций, направленных на достижение общего полезного результата - восстановление газовой константы крови.

Поделись с друзьями
Добавить в избранное (необходима авторизация)