Нужна помощь в написании работы?

Канальцевая реабсорбция

Первичная моча превращается в конечную благодаря процессам, которые происходят в почечных канальцах и собирательных бочках. В почке человека за сутки образуется 150 - 180 л фильма, или первичной мочи, а выделяется 1,0-1,5 л мочи. Остальная жидкость всасывается в канальцах и собирательных трубочках.

Канальцевая реабсорбция - это процесс обратного всасывания воды и  веществ  из содержащейся в просвете канальцев мочи в лимфу и кровь. Основной смысл реабсорбции состоит в том, чтобы сохранить организму все жизненно важные вещества в необходимых количествах. Обратное всасывание происходит во всех отделах нефрона. Основная масса молекул реабсорбируется в проксимальном отделе нефрона. Здесь практически полностью абсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, C1-, HCO3- и многие другие вещества.

В петле Генле, дистальном отделе канальца и собирательных трубочках всасываются электролиты и вода. Ранее считали, что реабсорбция в проксимальной части канальца является обязательной и нерегулируемой. В настоящее время доказано, что она регулируется как нервными, так и гуморальными факторами.

Обратное всасывание различных веществ в канальцах может происходить пассивно и активно. Пассивный транспорт происходит без затраты энергии по электрохимическому, концентрационному или осмотическому градиентам. С помощью пассивного транспорта осуществляется реабсорбция воды, хлора, мочевины.

Активным транспортом называют перенос веществ против электрохимического и концентрационного градиентов. Причем различают первично-активный и вторично-активный транспорт. Первично-активный транспорт происходит с затратой энергии клетки. Примером служит перенос ионов Na+ с помощью фермента Na+, K+ - АТФазы, использующей энергию АТФ. При вторично-активном транспорте перенос вещества осуществляется за счет энергии транспорта другого вещества.  Механизмом  вторично-активного транспорта реабсорбируются глюкоза и аминокислоты.

Секреция органических кислот (феноловый красный, ПАГ, диодраст, пенициллин) и органических оснований (холин) происходит в проксимальном сегменте нефрона и обусловлена функционированием специальных систем транспорта. Калий секретируется в конечных частях дистального сегмента и собирательных трубках. Подобно секреции органических кислот, секреция органических оснований (например, холина) происходит в проксимальном сегменте нефрона и характеризуется Тm. Системы секреции органических кислот и оснований функционируют независимо друг от друга, при угнетении секреции органических кислот пробенецидом секреция оснований не нарушается.

Транспорт в нефроне К+ характеризуется тем, что К+ не только подвергается обратному всасыванию, но и секретируется клетками эпителия конечных отделов нефрона и собирательных трубок. При реабсорбции из просвета канальца К+ поступает в эпителиальную клетку, где концентрация К+ во много раз выше, чем в канальцевой жидкости, и К+ диффундирует из клетки через базальную плазматическую мембрану в тканевую интерстициальную жидкость, а затем уносится кровью. При секреции К+ поступает в клетку в обмен на Na+ через эту же мембрану с помощью  натрий-калиевого насоса, который удаляет Na+ из клетки; тем самым поддерживается высокая внутриклеточная концентрация К+. При избытке К+ в организме система регуляции стимулирует его секрецию клетками канальцев. Возрастает проницаемость для К+ мембраны клетки, обращенной в просвет канальца, появляются «каналы», по которым К+ по градиенту концентрации может выходить из клетки. Скорость секреции К+ зависит от градиента электрохимического потенциала на этой мембране клетки: чем больше электроотрицательность апикальной мембраны, тем выше уровень секреции. При введении в кровь и поступлении в просвет канальца слабо реабсорбируемых анионов, например сульфатов, увеличивается секреция К+. Таким образом, секреция К зависит от его внутриклеточной концентрации, проницаемости для К+ апикальной мембраны клетки и градиента электрохимического потенциала этой мембраны. При дефиците К+ в организме клетки конечных отделов нефрона и собирательных трубок прекращают секрецию К+ и только реабсорбируют его из канальцевой жидкости. В этом случае К из просвета канальца транспортируется через апикальную плазматическую мембрану внутрь клетки, движется по цитоплазме в сторону основания клетки и через базальную плазматическую мембрану поступает в тканевую жидкость, а затем в кровь. Приведенные данные указывают на высокую пластичность клеток этих отделов канальцев, способных под влиянием регуляторных факторов перестраивать свою деятельность, изменяя направление транспорта К+, осуществляя то его реабсорбцию, то секрецию.

Определение величины канальцевой секреции. Секреторную функцию проксимальных канальцев измеряют с помощью веществ, которые выделяются из организма главным образом посредством канальцевой секреции. В кровь вводят ПАГ (или диодраст) вместе с инулином, который служит для измерения клубочковой фильтрации. Величина транспорта (T) органического вещества (ТSран) при секреции (S) его из крови в просвет канальца определяется по разности между количеством этого вещества, выделенным почкой (UPAH ∙V), и количеством попавшего в мочу вследствие фильтрации в (С1п-РРАН):

TSРАН = UРАН ∙ V─ СIn ∙ PРАН

Приведенная формула характеризует величину секреции вещества почкой при любом уровне загрузки секреторной системы. В то же время мерой работы секреторного аппарата почки служит его максимальная загрузка.

При условии полного насыщения секреторного аппарата ПАГ определяется величина максимального канальцевого транспорта ПАГ (ТmРАН), которая является мерой количества функционирующих клеток проксимальных канальцев. У человека Тmран составляет 80 мг/мин на 1,73 м2 поверхности тела.

Поделись с друзьями
Добавить в избранное (необходима авторизация)