Нужна помощь в написании работы?

Чтобы найти напряженность с помощью теорем Гаусса, нужно взять интеграл. А как его взять, если мы Е еще только пытаемся найти? Кроме того, под интегралом «мешает» cosa. Надо суметь выбрать такую замкнутую поверхность (ее удобно называть гауссовой), в каждой точке которой было бы Е = const, и cosa = const. Тогда в левой части теоремы Е и cosa можно будет вынести из-под знака интеграла. Поэтому практически теорему Гаусса можно применить только в следующих случаях: сфера, шар, длинная нить, длинный цилиндр, бесконечная плоскость.

1) Сфера, заряженная с поверхностной плотностью заряда s (Кл/м2)

Рассмотрим области : 1) вне сферы () и внутри ее (). Выберем поверхности: 1) S1  и 2) S2 – обе поверхности – сферы, концентрические с заряженной сферой. Сначала найдем потоки вектора Е через выбранные поверхности, а затем воспользуемся теоремой.

 (¨)

Потоки вектора Е через S1 () и S2. ()

E^n, a = 0, cosa = 1.

                                               (¨¨)

по теореме Гаусса;

F2 = 0, т.к. S2 не охватывает никаких зарядов. Приравнивая потоки из (¨) и (¨¨), найдем E(r).

 

q = s×2pR2 – полный заряд сферы

Вне сферы поле такое же, как поле точечного заряда. На границе сферы происходит скачок напряженности.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

2)Тонкая длинная нить, заряженная с линейной плотностью заряда t (Кл/м)

В этом случае «гауссова» поверхность – соосный с нитью цилиндр длиной l.

Сначала найдем поток, потом воспользуемся теоремой Гаусса.

Разобьем поверхность цилиндра на боковую и две торцевых. Для боковой - cosa = 1, для торцевых - cosa = 0.

 

по теореме Гаусса; охватываемый заряд – это отрезок нити длиной l. Приравнивая и сокращая, получим E(r).

 

3) Тонкостенный длинный цилиндр, заряженный:

1)    с линейной плотностью заряда t или

2)    с поверхностной плотностью заряда s.

Этот пример аналогичен предыдущему. Выбираем гауссову поверхность в виде соосного цилиндра, разбиваем поверхность на боковую и две торциальные. В первом случае при заданной линейной плотности t получим такую же формулу, как идля длинной нити. Во втором случае охватываемый заряд равен (s×2p×R×l) и формула для E несколько иная, хотя зависимость от r – та же.

4) Плоскость, бесконечно протяженная, заряженная с поверхностной плотностью заряда s.

Выберем гауссову поверхность S в виде цилиндра, перпендикулярного заряженной плоскости. Высота цилиндра (2×х/2).  Разобьем поверхность на боковую и две торцевых.

поток через Sбок = 0, т.к.× E^n,

a = 90о и

cosa = 0

 

Sзаштрих – площадка с зарядом, охватываемым цилиндром

S заштрих =  S торц, т.к. образующие цилиндра перпендикулярны заряженной плоскости. Поле протяженной плоскости – однородное и не зависит от расстояния

 

 

5) Две плоскости, параллельные, разноименно заряженные (плоский конденсатор). В этом случае напряженность поля можно найти по принципу суперпозиции, зная напряженность поля одной плоскости:  

A)   ЕА = Е2 - Е1 = 0

B)   ЕВ = Е2 + Е1 =s /eо

C)   ЕС = Е1 - Е2 =0

Поле плоского конденсатора можно считать однородным с достаточной степенью точности, если расстояние между пластинами значительно больше размеров пластин.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями