Нужна помощь в написании работы?

     Будем рассматривать только случаи, когда напряженность и потенциал зависят только от одной координаты х или радиальной координаты r для сферически или цилиндрически симметричных тел. Разность потенциалов связана с напряженностью в этом случае как (см. формулу ()):

  (ª)

Связь разности потенциалов с напряженностью для случая одной переменной х или r (математически это уравнение однотипно с () при замене х® r)

     Из уравнений (ª) или () можно найти разность потенциалов, если известна функция Е(r) или Е(r). Чтобы получить формулу для потенциала, следует выбрать уровень нулевого потенциала (так же, как в случае потенциальной энергии – см. механику). Обычно принимают j = 0 на бесконечности, но для поля нити это невозможно (см. ниже).

1) Точечный заряд.

Подставим в формулу (ª) выражение для напряженности поля точечного заряда. 1 и 2 – любые две точки на радиальной оси координат r. Примем j 1 = 0 при

r1 ®¥, заменим j 2 ® j , r2 ®r получим j (r).

 (при = 0)

2).Сфера радиуса R, заряженная с поверхностной плотностью заряда s (Кл/м2).

Полный заряд на сфере q = s×4p×R2 . Будем рассматривать две области:1)  - выбираем две любые точки 1 и 2 в этой области и 2)  также выбираем две любые точки уже в этой области. Потенциал должен быть непрерывной функцией, в отличие от напряженности он не может иметь разрывов в данной точке, т.к. по смыслу j - потенциальная энергия единичного положительного заряда, а двух энергий у одного заряда в одной точке данного поля не может быть.

Подставим в (ª) Е поля сферы. Для  получается та же формула, что и для поля точечного заряда.

      (при = 0)

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

  

   

3)Бесконечно длинная нить, заряженная с линейной плотностью заряда t.

Выберем на оси радиальных координат r две любые точки с координатами r1 и r2.

(см. рис.). Подставим в (ª) напряженность поля длинной нити и проинтегрируем.

В этом случае принять j = 0 на бесконечности нельзя (см. график

ln x), поэтому выбираем j = 0 в некоторой произвольной точке с координатой ro. Т.е. примем

j 1 = 0 при r1 = r0,

заменим j 2 ® j , r2 ®r получим

j (r)

j = 0 при r = r0

4)Бесконечно протяженная плоскость, равномерно заряженная с поверхностной плотностью заряда s (Кл/м2). Выберем на оси координат х две произвольные точки х1  и  х2 .). Используем формулу связи Е и j  (), подставим выражение для напряженности поля бесконечной плоскости.

Чтобы получить выражение для потенциала примем 1)j 1 = 0 при

х1 = 0 и 2) j 1 = 0 при х1 = d (d – произвольная точка на оси х)

   1)           j = 0 при  х = 0

   2)   j = 0 при  х = d

     Следует иметь в виду, что формулы для Е и j  в случаях плоскости, нити, цилиндра применимы только на расстояниях от них, существенно меньших размеров этих тел. В действительности при учете краевых эффектов поля становятся более сложными.

     Во всех случаях, задавая нулевой уровень потенциала j  = 0 в различных точках, мы можем получить сколько угодно формул для потенциала данного поля. Потенциальные кривые (или прямые), т.е. графики j(r)или j(х) при этом будут перемещаться по вертикали параллельно самим себе. В принципе, неважно, где выбрать нулевой уровень потенциала, т.к. во всех задачах имеет значение не сам потенциал, а его изменение

     Так как потенциал – скалярная величина, а напряженность – вектор, то значительно проще найти сначала зависимость j(r) или j(х), затем дифференцируя, получить формулу для Е(r)или Е (х).

     В качестве примера найдем потенциал поля на оси тонкого кольца, равномерно заряженного с линейной плотностью t, а затем Е (х).Для этого выделим в кольце бесконечно малый элемент dl с зарядом dq = t×dl (см. рис.) В некоторой точке A потенциал складывается из потенциалов, создаваемых всеми элементами кольца.

  

потенциал поля элементарного заряда dq  (= 0)

«суммируя» (интегрируя) потенциалы от всех элементов кольца, получим формулу для j (х).

Дифференцируя по х, найдем напряженность Е(х)

Поделись с друзьями