Назначение критерия
Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n1,n2 ≥3 или n1=2, n2≥5. И является более мощным, чем критерий Розенбаума.
Описание критерия
Существует несколько способов использования критерия и несколько вариантов таблиц критических значений, соответствующих этим способам (Гублер Е. В., 1978; Рунион Р., 1982; Захаров В. П.Р 1985; McCall R., 1970; Krauth J., 1988).
Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами. Мы помним, что 1-м рядом (выборкой, группой) мы называем тот ряд значений, в котором значения, по предварительной оценке, выше, а 2-м рядом - тот, где они предположительно ниже.
Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны. Иногда эти различия называют различиями в расположении двух выборок (Welkowitz J. et al., 1982).
Эмпирическое значение критерия U отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше Uэмп, тем более вероятно, что различия достоверны.
Гипотезы
H0: Уровень признака в группе 2 не ниже уровня признака
в группе 1.
H1: Уровень признака в группе 2 ниже уровня признака
в группе 1.
Графическое представление критерия U
На Рис. 2.5. представлены три из множества возможных вариантов соотношения двух рядов значений.
В варианте (а) второй ряд ниже первого, и ряды почти не перекрещиваются. Область наложения слишком мала, чтобы скрадывать различия между рядами. Есть шанс, что различия между ними достоверны. Точно определить это мы сможем с помощью критерия U.
В варианте (б) второй ряд тоже ниже первого, но и область перекрещивающихся значений у двух рядов достаточно обширна. Она может еще не достигать критической величины, когда различия придется признать несущественными. Но так ли это, можно определить только путем точного подсчета критерия U.
В варианте (в) второй ряд ниже первого, но область наложения настолько обширна, что различия между рядами скрадываются.
Рис. 2.5. Возможные варианты соотношении рядов значений в двух выборках; штриховкой обозначены зоны наложения
Ограничения критерия U
1. В каждой выборке должно быть не менее 3 наблюдении:
n1,n2 ≥3; допускается, чтобы в одной выборке было 2 наблюдения, но тогда во второй их должно быть не менее 5.
2. В каждой выборке должно быть не более 60 наблюдений; Однако уже при n1,n2 >20 ранжирование становится достаточно трудоемким.
На наш взгляд, в случае, если n1,n2 >20, лучше использовать другой критерий, а именно угловое преобразование Фишера в комбинации с критерием λ, позволяющим выявить критическую точку, в которой накапливаются максимальные различия между двумя сопоставляемыми выборками. Формулировка звучит сложно, но сам метод достаточно прост. Каждому исследователю лучше попробовать разные пути и выбрать тот, который кажется ему более подходящим.
Пример
Вернемся к результатам обследования студентов физического и психологического факультетов Ленинградского университета с помощью методики Д. Векслера для измерения вербального и невербального интеллекта. С помощью критерия Q Розенбаума мы в предыдущем параграфе смогли с высоким уровнем значимости определить, что уровень вербального интеллекта в выборке студентов физического факультета выше. Попытаемся установить теперь, воспроизводится ли этот результат при сопоставлении выборок по уровню невербального интеллекта. Данные приведены в Табл. 2.3.
Можно ли утверждать, что одна из выборок превосходит другую по уровню невербального интеллекта?
Таблица 2.3
Индивидуальные значения невербального интеллекта в выборках студентов физического (n1 =14) и психологического (n2=12) факультетов
Студенты-физики |
Студенты - психологи |
|||||
Код имени испытуемого |
Показатели невербального интеллекта
|
Код имени испытуемого |
Показатель невербального интеллекта |
|||
1. |
И.А |
111 |
1. |
Н.Т. |
113 |
|
2. |
К.А. |
104 |
2. |
О.В. |
107 |
|
3. |
К.Е. |
107 |
3. |
Е.В. |
123 |
|
4. |
П.А. |
90 |
4. |
Ф.О. |
122 |
|
5. |
С.А. |
115 |
5. |
И.Н. |
117 |
|
6. |
СтЛ. |
107 |
6. |
И.Ч. |
112 |
|
7. |
Т.А. |
106 |
7. |
И.8. |
105 |
|
8. |
Ф.А. |
107 |
8. |
КО. |
108 |
|
9. |
Ч.И. |
95 |
9. |
Р.Р. |
111 |
|
10. |
Ц.А. |
116 |
10. |
Р.И. |
114 |
|
11. |
См.А. |
127 |
11. |
O.K. |
102 |
|
12. |
КАн. |
115 |
12. |
Н.К. |
104 |
|
13. |
Б.Л. |
102 |
|
|
|
|
14. |
Ф.В. |
99 |
|
|
|
|
Критерий U требует тщательности и внимания. Прежде всего, необходимо помнить правила ранжирования.
Правила ранжирования
1. Меньшему значению начисляется меньший ранг.
Наименьшему значению начисляется ранг 1.
Наибольшему значению начисляется ранг, соответствующий количеству ранжируемых значений. Например, если п=7, то наибольшее значение получит ранг 7, за возможным исключением для тех случаев, которые предусмотрены правилом 2.
2. В случае, если несколько значений равны, им начисляется ранг, представляющий собой среднее значение из тех рангов, которые они получили бы, если бы не были равны.
Например, 3 наименьших значения равны 10 секундам. Если бы мы измеряли время более точно, то эти значения могли бы различаться и составляли бы, скажем, 10,2 сек; 10,5 сек; 10,7 сек. В этом случае они получили бы ранги, соответственно, 1, 2 и 3. Но поскольку полученные нами значения равны, каждое из них получает средний ранг:
Допустим, следующие 2 значения равны 12 сек. Они должны были бы получить ранги 4 и 5, но, поскольку они равны, то получают средний ранг:
и т.д.
3. Общая сумма рангов должка совпадать с расчетной, которая определяется по формуле:
где N – общее количество ранжируемых наблюдений (значений).
Несовпадение реальной и расчётной сумм рангов будет свидетельствовать об ошибке, допущенной при начислении рангов или их суммировании. Прежде чем продолжить работу, необходимо найти ошибку и устранить её.
При подсчете критерия U легче всего сразу приучить себя действовать по строгому алгоритму.
АЛГОРИТМ 4
Подсчет критерия U Манна-Уитни
1.Перенести все данные испытуемых на индивидуальные карточки.
2.Пометить карточки испытуемых выборки 1 одним цветом, скажем красным, а все карточки из выборки 2 - другим, например, синим.
3.Разложить все карточки в единый ряд по степени нарастания признака, не считаясь с тем, к какой выборке они относятся, как если бы мы работали с одной большой выборкой.
4.Проранжировать значения на карточках, приписывая меньшему значению меньший ранг. Всего рангов получится столько, сколько у нас (n1 +n2).
5.Вновь разложить карточки на две группы, ориентируясь на цветные обозначения: красные карточки в один ряд, синие - в другой.
6.Подсчитать сумму рангов отдельно на красных карточках (выборка 1) и на синих карточках (выборка 2). Проверить, совпадает ли общая сумма рангов с расчетной.
7.Определить большую из двух ранговых сумм.
8.Определить значение U по формуле:
где n1 - количество испытуемых в выборке 1;
n2 - количество испытуемых в выборке 2;
Тх - большая из двух ранговых сумм;
nx - количество испытуемых в группе с большей суммой рангов. 9. Определить критические значения U по Табл. II Приложения
Если Uэмп >UKp 0,05, Н0 принимается.
Если Uэмп ≤UKp 0,05, Но отвергается. Чем меньше значения U, тем
достоверность различий выше.
Теперь проделаем всю эту работу на материале данного примера. В результате работы по 1-6 шагам алгоритма построим таблицу.
Таблица 2.4
Подсчет ранговых сумм по выборкам студентов физического и психологического факультетов
Студенты-физики (n1 =14) |
Студенты-психологи (n2 =12) |
||||||
Показатель невербального интеллекта |
Ранг |
Показатель невербального интеллекта |
Ранг |
||||
127 |
26 |
|
|
||||
|
|
123 |
25 |
||||
|
|
122 |
24 |
||||
|
|
117 |
23 |
||||
116 |
22 |
|
|
||||
115 |
20,5 |
|
|
||||
115 |
20,5 |
|
|
||||
|
|
114 |
19 |
||||
|
|
113 |
18 |
||||
|
|
112 |
17 |
||||
111 |
15,5 |
111 |
15,5 |
||||
|
|
108 |
14 |
||||
107 |
11.5 |
107 |
115 |
||||
107 |
11,5 |
|
|
||||
107 |
11,5 |
|
|
||||
106 |
9 |
|
|
||||
|
|
105 |
8 |
||||
104 |
6.5 |
104 |
6,5 |
||||
102 |
4,5 |
102 |
4,5 |
||||
99 |
3 |
|
|
||||
95 |
2 |
|
|
||||
90 |
1 |
|
|
||||
Суммы |
1501 |
165 |
1338 |
186 |
|||
Средние |
107.2 |
|
111,5 |
|
|||
Общая сумма рангов: 165+186=351.
Расчетная сумма:
Равенство реальной и расчетной сумм соблюдено.
Мы видим, что по уровню невербального интеллекта более "высоким" рядом оказывается выборка студентов-психологов.
Именно на эту выборку приходится большая ранговая сумма: 186.
Теперь мы готовы сформулировать гипотезы:
H0: Группа студентов-психологов не превосходит группу студентов-физиков по уровню невербального интеллекта.
H1: Группа студентов-психологов превосходит группу студентов-физиков по уровню невербального интеллекта.
В соответствии со следующим шагом алгоритма определяем эмпирическую величину U:
Поскольку в нашем случае n1 не равно n2 подсчитаем эмпирическую величину U и для второй ранговой суммы (165), подставляя в формулу соответствующее ей пх:
Такую проверку рекомендуется производить в некоторых руководствах (Рунион Р., 1982; Greene J., D'Olivera M., 1989). Для сопоставления с критическим значением выбираем меньшую величину U: Uэмп =60.
По Табл. II Приложения 1 определяем критические значения для соответствующих п, причем меньшее п принимаем за n1 (n1 = 12) и отыскиваем его в верхней строке Табл. II Приложения 1, большее n принимаем за п2 (п2 = 14), и отыскиваем его в левом столбце Табл. II Приложения 1.
Мы помним, что критерий U является одним из двух исключений из общего правила принятия решения о достоверности различий, а именно, мы можем констатировать достоверные различия, если
Построим "ось значимости".
Uэмп >Uкр
Ответ: Н0 принимается. Группа студентов-психологов не превосходит группы студентов-физиков по уровню невербального интеллекта.
Обратим внимание на то, что для данного случая критерий Q Розенбаума неприменим, так как размах вариативности в группе физиков шире, чем в группе психологов: и самое высокое, и самое низкое значение невербального интеллекта приходится на группу физиков (см. Табл. 2.4).
Поможем написать любую работу на аналогичную тему