Назначение критерия
Критерий применяется для сопоставления показателей, измеренных в двух разных условиях на одной и той же выборке испытуемых.
Он позволяет установить не только направленность изменений, но и их выраженность. С его помощью мы определяем, является ли сдвиг показателей в каком-то одном направлении более интенсивным, чем в другом.
Описание критерия Т
Этот критерий применим в тех случаях, когда признаки измерены по крайней мере по шкале порядками сдвиги между вторым и первым замерами тоже могут быть упорядочены. Для этого они должны варьировать в достаточно широком диапазоне. В принципе, можно применять критерий Т и в тех случаях, когда сдвиги принимают только три значения: —1, 0 и +1, но тогда критерий Т вряд ли добавит что-нибудь новое к тем выводам, которые можно было бы получить с помощью критерия знаков. Вот если сдвиги изменяются, скажем, от —30 до +45, тогда имеет смысл их ранжировать и потом суммировать ранги
Суть метода состоит в том, что мы сопоставляем выраженность сдвигов в том и ином направлениях по абсолютной величине. Для этого мы сначала ранжируем все абсолютные величины сдвигов, а потом суммируем ранги. Если сдвиги в положительную и в отрицательную сторону происходят случайно, то суммы рангов абсолютных значений их будут примерно равны. Если же интенсивность сдвига в одном из направлений перевешивает, то сумма рангов абсолютных значений сдвигов в противоположную сторону будет значительно ниже, чем это могло бы быть при случайных изменениях.
Первоначально мы исходим из предположения о том, что типичным сдвигом будет сдвиг в более часто встречающемся направлении, а нетипичным, или редким, сдвигом - сдвиг в более редко встречающемся направлении.
Гипотезы
Но: Интенсивность сдвигов в типичном направлении не превосходит интенсивности сдвигов в нетипичном направлении.
Н1. Интенсивность сдвигов в типичном направлении превышает интенсивность сдвигов в нетипичном направлении.
Графическое представление критерия Т
Сдвига в противоположные стороны мы можем представить себе в виде двух облаков, как и в критерии знаков. Величина облака зависит не только от количества соответствующих сдвигов, но и от их интенсивности, отраженной в длине стрелок (Рис. 3.3). В сущности, облака противостоят друг другу, как два воздушных фронта: они не просто соревнуются по величине, они меряются силами! При определенных п, а именно при п>18, мы вообще можем отказаться от понятия типичного сдвига. Сдвигов в ту и другую сторону может оказаться поровну, но если 9 меньших сдвигов будут относиться к одному направлению, а 9 больших сдвигов - к противоположному, то мы можем констатировать достоверное преобладание этого противоположного направления сдвигов. Вспомним, что критерий знаков в этом случае не выявил бы никаких достоверных различий.
Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.
|
А) «Светлый фронт» преобладает над «тёмным фронтом» и по количеству сдвигов, и по их интенсивности.
Б) «Светлый фронт» преобладает над «тёмным фронтом» только по интенсивности сдвигов, но по количеству сдвигов они равны.
в) "светлый фронт" уступает "темному' по количеству сдвигов, но самые интенсивные сдвиги принадлежат «светлому фронту».
Рис. 3.3. Варианты соотношения "светлого" и "темного фронтов" - сдвигов двух разных направленностей
На Рис. З.З(а) "светлый фронт" преобладает над "темным фронтом" и по количеству сдвигов, и по их интенсивности. На Рис. 3.3(6) "светлый фронт" преобладает только по интенсивности сдвигов, но не по их количеству; на Рис. З.З(в) в "светлом фронте" наблюдаются более интенсивные сдвиги, но их меньше, чем в "темном фронте". Здесь критерии знаков мог бы констатировать преобладание изменений, соответствующих "темному фронту". Между тем, интенсивность противоположных, хотя и редких, сдвигов, столь велика, что делать какие-то однозначные выводы было бы опрометчиво.
Ограничения в применения критерия Т Внлкоксона
1. Минимальное количество испытуемых, прошедших измерения в двух условиях - 5 человек. Максимальное количество испытуемых - 50 человек, что диктуется верхней границей имеющихся таблиц. Критические значения Т приведены в Табл. VI Приложения 1.
2. Нулевые сдвиги из рассмотрения исключаются, и количество наблюдений n уменьшается на количество этих нулевых сдвигов (McCall R., 1970, р. 36). Можно обойти это ограничение, сформулировав гипотезы, включающие отсутствие изменений, например: "Сдвиг в сторону увеличения значений превышает сдвиг в сторону уменьшения значений и тенденцию сохранения их на прежнем уровне".
Пример
В выборке курсантов военного училища (юноши в возрасте от 18 до 20 лет) измерялась способность к удержанию физического волевого усилия на динамометре. Сначала у испытуемых измерялась максимальная мышечная сила каждой из рук, а на следующий день им предлагалось выдерживать, на динамометре с подвижной стрелкой мышечное усилие, равное 1/2 максимальной мышечной силы данной руки. Почувствовав усталость, испытуемый должен был сообщить об этом экспериментатору, но не прекращать опыт, преодолевая усталость и неприятные ощущения - "бороться, пока воля не иссякнет". Опыт проводился дважды; вначале с обычной инструкцией, а затем, после того, как испытуемый заполнял опросник самооценки волевых качеств по методике А.Ц. Пуни (Пуни А.Ц., 1977), ему предлагалось представить себе, что он уже добился идеала в развитии волевых качеств, и продемонстрировать соответствующее идеалу волевое усилие. Подтвердилась ли гипотеза экспериментатора о том, что обращение к идеалу способствует возрастанию волевого усилия? Данные представлены в Табл. 3.5.
Таблица 3.5
Расчет критерия Т при сопоставлении замеров физического волевого усилия
Код имени испытуемого |
Длительность удержания усилия на динамометре (с) |
Разность (tпосле-tдо) |
Абсолютное значение разности |
Рангоаый номер разности |
||
До измерения волевых качеств и обращения к идеалу (tдо) |
После измерения волевых качеств и обращения к идеалу (tпосле) |
|||||
1 |
Г. |
64 |
25 |
-39 |
39 |
11 |
2 |
Кос. |
77 |
50 |
-27 |
27 |
8 |
3 |
Крив. |
74 |
77 |
+3 |
3 |
1 |
4 |
Кур. |
95 |
76 |
-19 |
19 |
6 |
5 |
Л. |
105 |
67 |
-38 |
38 |
9,5 |
6 |
М. |
83 |
75 |
-8 |
8 |
4 |
7 |
Р. |
73 |
77 |
+4 |
4 |
2,5 |
8 |
С. |
75 |
71 |
-4 |
4 |
2,5 |
9 |
Т. |
101 |
63 |
-38 |
38 |
9,5 |
10 |
Х. |
97 |
122 |
+25 |
25 |
7 |
11 |
Ю. |
78 |
60 |
-18 |
18 |
5 |
Сумма |
|
66 |
Для подсчета этого критерия нет необходимости упорядочивать ряды значений по нарастанию признака. Мы можем использовать алфавитный список испытуемых, как в данном случае.
Первый шаг в подсчете критерия Т - вычитание каждого индивидуального значения "до" из значения "после»3 . Мы видим из Табл. 3.5, что 8 полученных разностей - отрицательные и лишь 3 - положительные. Это означает, что у 8 испытуемых длительность удержания мышечного усилия во втором замере уменьшилась, а у 3 - увеличилась. Мы столкнулись с тем случаем, когда уже сейчас мы не можем сформулировать статистическую гипотезу, соответствующую первоначальному предположению исследователя. Предполагалось, что обращение к идеалу будет увеличивать длительность мышечного усилия, а экспериментальные данные свидетельствуют, что лишь в 3 случаях из 11 этот показатель действительно увеличился. Мы можем сформулировать лишь гипотезу, предполагающую несущественность сдвига этого показателя в сторону снижения.
3 Можно вычитать значения "после" из значений "до", это никак не повлияет на расчет критерия. Но лучше во всех случаях придерживаться одной системы, чтобы не запутаться самим.
Сформулируем гипотезы.
H0: Интенсивность сдвигов в сторону уменьшения длительности мышечного усилия не превышает интенсивности сдвигов в сторону ее увеличения.
Н1: Интенсивность сдвигов а сторону уменьшения длительности мышечного усилия превышает интенсивность сдвигов в сторону ее увеличения.
На следующем шаге все сдвиги, независимо от их знака, должны быть проранжированы по выраженности. В Табл. 3.5 в четвертом слева столбце приведены абсолютные величины сдвигов, а в последнем столбце (справа) - ранги этих абсолютных величин. Меньшему значению соответствует меньший ранг. При этом сумма рангов равна 66, что соответствует расчетной:
Теперь отметим те сдвиги, которые являются нетипичными, в данном случае - положительными. В Табл. 3.5 эти сдвиги и соответствующие им ранги выделены цветом. Сумма рангов этих "редких" сдвигов и составляет эмпирическое значение критерия Т:
где Rr - ранговые значения сдвигов с более редким знаком. Итак, в данном случае,
Тэмп=1+2,5+7=10,5
По Таблице VI Приложения 1 определяем критические значения Т для п=11:
Построим "ось значимости".
Т0,01 |
? |
Т0,05 |
Зона значимости ! |
Тэмп |
…Зона незначимости |
7 |
10,5 |
13 |
Зона значимости в данном случае простирается влево. Действительно, если бы "редких", в данном случае положительных, сдвигов не было совсем, то и сумма их рангов равнялась бы нулю. В данном же случае эмпирическое значение Т попадает в зону неопределенности:
Ответ: Но отвергается. Интенсивность отрицательного сдвига показателя физического волевого усилия превышает интенсивность положительного сдвига (р<0,05).
Попытаемся графически отобразить интенсивность отрицательных и положительных сдвигов. На Рис. 3.4 слева сдвиги представлены в секундах, а справа - в своих ранговых значениях. Мы видим, что ранжирование несколько уменьшает площади сопоставляемых облаков, или "фронтов".
Рис. 3.4. Графическое представление отрицательных и положительных сдвигов в длительности удержания мышечного усилия; слева - и секундах; справа - в ранговых значениях
Таким образом, исследователю придется признать, что продолжительность удержания мышечного волевого усилия во втором замере снижается, и этот сдвиг неслучаен. Инструкция, ориентирующая испытуемого на соответствие идеалу в развитии воли, оказалась гораздо менее мощным фактором, чем какая-то иная сила - возможно, мышечное утомление, может быть, разочарование в себе или в возможностях данного психологического эксперимента. А может быть, в момент второго замера просто перестает действовать какой-то мощный фактор, который был активен вначале? На все эти вопросы статистические методы не могут ответить, если в схему эксперимента не включена контрольная группа - в данном случае, выборка, уравновешенная с экспериментальной группой по всем значимым характеристикам (полу, возрасту, профессии, месту обучения), у которой просто измерили бы вторично волевое усилие через такой же промежуток времени, не призывая соответствовать идеалу в развитии воли.
Представим выполненные действия в виде алгоритма:
АЛГОРИТМ 9
Подсчет критерия Т Вилкоксона
1. Составить список испытуемых в любом порядке, например, алфавитном.
2. Вычислить разность между индивидуальными значениями во втором и первом замерах ("после" - "до"). Определить, что будет считаться "типичным" сдвигом и сформулировать соответствующие гипотезы.
3. Перевести разности в абсолютные величины и записать их отдельным столбцом (иначе трудно отвлечься от знака разности).
4. Проранжировать абсолютные величины разностей, начисляя меньшему значению меньший ранг. Проверить совпадение полученной суммы рангов с расчетной.
5. Отметить кружками или другими знаками ранги, соответствующие сдвигам в "нетипичном" направлении.
S. Подсчитать сумму этих рангов по формуле:
где Rr - ранговые значения сдвигов с более редким знаком.
7. Определить критические значения Т для данного n по Табл. VI Приложения 1. Если Тэмп меньше или равен Ткр , сдвиг в "типичную" сторону по интенсивности достоверно
преобладает.
Поможем написать любую работу на аналогичную тему