Нужна помощь в написании работы?

В соответствии с упомянутыми учебниками (глава I, § 3) в нашем курсе вводится ряд понятий теории вероятностей. Рассматриваются случайные, достоверные, невозможные, более вероятные, менее вероятные, маловероятные, равновероятные события. Новые термины связываются с известными из жизни словами – часто, редко, всегда, никогда, «это очень возможно», «это обязательно произойдет», «это маловероятно», «это никогда не случится» и другими, определяющими частоту случайных событий.   

 Курс начинается с того, что вводится базовое понятие случайное событие. Это такое событие, которое при одних и тех же условиях может произойти, а может не произойти. Например, купив лотерейный билет, мы можем выиграть, а можем и не выиграть, на очередных выборах партия может победить, а может и не победить, завтра на уроке математики ученика могут вызвать к доске, а могут и не вызвать.

События заглавными латинскими буквами. Приведем примеры.

А: в следующем году первый снег в Москве выпадет в воскресенье.

В: свалившийся со стола бутерброд упадет на пол маслом вниз.

С: при бросании кубика вы получите шестерку.

D: при бросании кубика вы получите четное число очков.

Все перечисленные выше события A,B,C,D – случайные.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Невозможное событие вводится как событие, которое в данных условиях произойти не может. Таковы, например, события E и F:

Е: в следующем году первый снег в Москве  вообще не выпадет.

F: при бросании кубика вы получите семерку.

Если же событие при данных условиях обязательно произойдет, то его называют достоверным. Ниже указаны два таких события:

G: свалившийся со стола бутерброд упадет на пол.

H: при бросании кубика вы получите число меньше семерки.

Правда, достоверность события G оказывается под вопросом в невесомости. Но там обычно не едят бутерброд с маслом. Невозможные и достоверные события встречаются в жизни сравнительно редко. Можно сказать, что мы живем в мире случайных событий.

Отметим, что события достоверные и невозможные на этом предварительном этапе мы предлагаем не относить к случайным событиям. Опыт преподавания данного материала показал, что школьникам 10 – 12 лет трудно считать случайными те события, которые происходят всегда, либо не происходят никогда .

Введение предельных случаев, удобное для построения формальной теории, но противоречащее бытовым представлениям, оказывается преждевременным. Понятие случайного события соответственно уточняется на более поздних ступенях обучения.

Качественная оценка вероятности событий приводит к тому, что при обсуждении в классе на один и тот же вопрос может быть дано несколько разных ответов, которые могут считаться верными, что непривычно на уроке математики и для ученика, и для учителя.

Например, при обсуждении вероятности наступления события

"вам подарят на день рождения собаку"

ученики в зависимости от личных обстоятельств могут дать ответы:

"это маловероятное событие",

"это очень возможное событие",

"это достоверное событие".

При решении таких задач главное – приводимая аргументация, понимание школьника смысла используемых понятий. Если аргументация вполне логична и разумна, ответ следует считать верным.

Чтобы доказать, что данное событие – случайное, предлагается привести пример такой ситуации или, как говорят математики, такого исхода, когда событие происходит, и пример такого исхода, когда оно не происходит.

Так, событие D – случайное, потому что оно происходит, когда на кубике выпадает, например, четверка, и не происходит, когда на кубике выпадает, допустим, пятерка.

При бросании кубика может выпасть только от одного до шести очков, поэтому событие F – невозможное, а событие H – достоверное.

Пример 1. Бросаем два кубика. Какие из следующих событий невозможные, случайные, достоверные?

A: на кубиках выпало одинаковое число очков.

B: сумма очков на кубиках не превосходит 12.

C: сумма очков на кубиках равна 11.

D: произведение очков на кубиках равно 11.

Решение. Исход любого бросания можно описать двумя числами, выпавшими на кубиках. Например, (3,1) означает, что на первом кубике выпало число 3, а на втором – 1.

При исходе (1,1) событие A происходит, а при исходе (1,2) – не происходит. Значит, событие А случайное.

Событие B происходит при любом исходе: ведь каждое из двух чисел на кубике не превосходит 6, а значит, их сумма не превосходит 12. Поэтому событие B достоверное.

Событие  С происходит при исходе (5,6), но не происходит при исходе (2,2). Значит, оно случайное.

Наконец, для события D нет исхода, при котором оно происходит: число 11 нельзя представить в виде произведения двух целых чисел от 1 до 6. значит, это событие невозможное.

Пример 2. В коробке 3 красных, 3 желтых, 3 зеленых шара. Вытаскиваем наугад 4 шара. Какие из следующих событий невозможные, случайные, достоверные?

A: все вынутые шары одного цвета.

B: все вынутые шары разных цветов.

C: среди вынутых шаров есть разноцветные.

D: среди вынутых шаров есть шары всех трех цветов.

Решение. Событие А – невозможное: нельзя вытащить из коробки 4 одноцветных шара (их только по 3 каждого цвета).

Событие В – тоже невозможное: разных цветов тоже не может быть больше 3, а вынутых шаров 4.

Событие С – достоверное: ведь все 4 шара, как мы уже выяснили, не могут быть одного цвета, поэтому среди них обязательно есть разноцветные.

Наконец, событие D – случайное. Закодируем исходы опытов первыми буквами цветов, в которые окрашены вынутые шары. Например: КЖЖЗ означает, что вынули один красный, два желтых и один зеленый шар; КЖЖЗ – пример исхода, при котором событие D происходит, а ККЖЖ – пример исхода, при котором D не происходит.

В ходе обсуждений различных примеров ученики убеждаются в том, что в мире случайных событий можно обнаружить закономерности и оценить шансы наступления различных событий.

Например, при бросании игрального кубика есть три шанса из шести, что выпадет четное число очков, только один шанс из шести, что выпадет пять очков и никаких шансов, что выпадет семь очков.

Однако рассматривая ситуацию с кубиком, ученик интуитивно опирается на гипотезу о "правильности" кубика, о равновероятности выпадения 1,2,3,4,5 и 6 очков при его подбрасывании.

Важно показать, что далеко не всегда можно точно вычислить шансы наступления того или иного события. Часто шансы приходится оценивать приблизительно – на основе жизненного опыта, уже имеющихся статистических данных или путем, проведения многократных экспериментов. Кстати, в дальнейшем, именно экспериментируя со случайными исходами, ученики убеждаются, что и кубик совсем не всегда оказывается "правильным". В качестве примера "неправильного" кубика демонстрируется кубик со сбитым центром тяжести (к одной из его граней изнутри подклеен пластилин) .

В задачах такого типа стоит обсудить с ребятами как общие статистические закономерности, так и индивидуальные особенности, в результате которых для разных людей возможны различные ответы на поставленные вопросы.

Покажем теперь линию развития задач по предложенной теме – от простых к более сложным. Первый блок задач может быть рассмотрен в классе со всеми учащимися, остальные – на кружке или факультативе.

Задача 1. Укажите, какие из следующих событий – невозможные, достоверные, случайные:

A: футбольный матч "Спартак" – "Динамо" закончится в ничью.

B: вы выиграете, участвуя в беспроигрышной лотерее.

C: в полночь выпадет снег, а через 24 часа будет светить солнце.

D: завтра будет контрольная по математике.

E: 30 февраля будет дождь.

F: вас изберут президентом США.

G: вас изберут президентом России.

Ответ. Событие В – достоверное, C, E, F – невозможные, A, D, G – случайные. Но если вы решаете эту задачу накануне выходного дня, то событие D можно считать невозможным.

Задача 2. Вы купили в магазине телевизор, на который фирма - производитель дает два года гарантию. Какие из следующих событий невозможные, случайные, достоверные:

A: телевизор не сломается в течение года.

B: телевизор не сломается в течение двух лет.

C: в течение двух лет вам не придется платить за ремонт телевизора.

D: телевизор сломается на третий год.

Ответ. События A, В , D – случайные, событие С – достоверное.

Задача 3. В коробке лежат 10 красных, 1 зеленая и 2 синих ручки. Из коробки наугад вынимают 2 предмета. Какие из следующих событий невозможные, случайные, достоверные:

A: будут вынуты 2- красные ручки.

B: будут вынуты 2- зеленые ручки.

C: будут вынуты 2 -синих ручки.

D: будут вынуты 2- разноцветных ручки.

E: будут вынуты 2 ручки.

F: будут вынуты 2 карандаша.

Ответ. События A, С , D – случайные, события B, F – невозможные,  событие Е – достоверное.

Задача 4. Винни Пух, Пятачок и все – все – все садятся за круглый стол праздновать день рождения. При каком количестве " всех – всех – всех" событие

А: Винни и Пятачок будут сидеть рядом -  является достоверным событием.

Ответ.  Если " всех – всех – всех" всего 1, т. е. За столом собрались всего три лица, то событие А – достоверное, если больше 1, то А – случайное событие.

Задача 5. В школе учится N учеников. При каких N событие

А: в школе есть ученики с совпадающими днями рождения является случайным, а при каких – достоверным? Выясните, произошло ли это событие в вашей школе. А в вашем классе?

Ответ. При N366 событие А – случайное, при N>366 событие А – достоверное.

Задача 6. Среди 100 билетов школьной благотворительной лотереи 20 выигрышных. Сколько билетов вам надо купить, чтобы событие

 А: вы ничего не выиграете – было невозможным?

Ответ. 81 билет.

Задача 7. В шкафу 10 пар ботинок с 36–го по 45-й размеры – по одной паре каждого размера. Какое минимальное количество ботинок надо наугад вынуть из шкафа, чтобы событие

А: из вынутых ботинок можно составить хотя бы одну пару – было достоверным?

Ответ. 11 ботинок.

Задача 8. В классе учатся 10 мальчиков и 20 девочек. Какие из следующих событий для такого класса является невозможными, случайными, достоверными?

A: есть два человека, родившихся в разных месяцах.

B: есть два человека, родившихся в одном месяце.

C: есть два мальчика, родившихся в одном месяце.

D: есть две девочки, родившихся в одном месяце.

E: все мальчики родились в разных месяцах.

F: все девочки родились в разных месяцах.

G: есть мальчик и девочка, родившиеся в одном месяце.

H: есть мальчик и девочка, родившиеся в разных месяцах.

Ответ. События A,C,E,G,H –случайные, B, D – достоверные, F – невозможное.

Задача 9. Автобусу, в котором едет 15 пассажиров, предстоит сделать 10 остановок. Какие из следующих событий для такого класса является невозможными, случайными, достоверными?

A: все пассажиры выйдут на разных остановках.

B: все пассажиры выйдут на одной остановке.

C: на каждой остановке хоть кто – то выйдет.

D: найдется остановка, на которой никто не выйдет.

E: на всех остановках выйдет четное число пассажиров.

F: на всех остановках выйдет нечетное число пассажиров.

Ответ. События A,C,E – случайные, A,E,F – невозможные.

Задача 10. На модели координатной прямой в точке 0 стоит фишка. После каждого бросания монеты она сдвигается на единицу вправо, если выпал "орел", и на единицу влево, если выпала "решка". Какие из следующих событий для такого класса является невозможными, случайными, достоверными?

A: после четырех бросаний фишка находится в точке 0.

B: после трех бросаний фишка находится в точке 2.

C: после пяти бросаний фишка находится в точке 5.

D: после пятидесяти бросаний фишка находится в точке 25.

E: после пятидесяти бросаний фишка находится в точке 26.

Ответ. События A,C,E – случайные, B,D– невозможные.

Задача 11.  На остановке останавливаются 3 автобуса: № 1,2 и 3. Интервал движения каждого автобуса колеблется от 8 до 10 минут. Когда Саша, Маша, Гриша и Наташа подошли к остановке, от нее отошел автобус №3, а еще через 6 минут автобус №1. После этого каждый из ребят высказал свое мнение о том, каким будет следующий автобус.

Саша: "следующим обязательно будет №2".

Маша: "возможно, что следующим будет №2".

Гриша: "возможно, что следующим будет №3".

Наташа: "невозможно, что следующим будет №1".

С кем из ребят вы согласны, а с кем нет? Объясните сделанный выбор.

Ответ. Не прав только Саша.

 

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями