Нужна помощь в написании работы?

Общее назначение множественной регрессии (этот термин был впервые использован в работе Пирсона - Pearson, 1908) состоит в анализе связи между несколькими независимыми переменными (называемыми также регрессорами или предикторами) и зависимой переменной. Специалисты по кадрам обычно используют процедуры множественной регрессии для определения вознаграждения адекватного выполненной работе.

В общественных и естественных науках процедуры множественной регрессии чрезвычайно широко используются в исследованиях. В общем, множественная регрессия позволяет исследователю задать вопрос (и, вероятно, получить ответ) о том, "что является лучшим предиктором для...". Например, исследователь в области образования мог бы пожелать узнать, какие факторы являются лучшими предикторами успешной учебы в средней школе. А психолога мог быть заинтересовать вопрос, какие индивидуальные качества позволяют лучше предсказать степень социальной адаптации индивида. Социологи, вероятно, хотели бы найти те социальные индикаторы, которые лучше других предсказывают результат адаптации новой иммигрантской группы и степень ее слияния с обществом. Заметим, что термин "множественная" указывает на наличие нескольких предикторов или регрессоров, которые используются в модели.

М. p. — метод многомерного анализа, посредством к-рого зависимая переменная (или критерий) Y связывается с совокупностью независимых переменных (или предикторов) X посредством линейного уравнения: Y' = а + b1Х1 + b2Х2 + ... + bkXk.

Коэффициенты регрессии или, по-другому, весовые коэффициенты b обычно определяют методом наименьших квадратов, минимизируя сумму квадратов отклонений фактических значений зависимой переменной от соотв. предсказанных значений.

При «пошаговом» («stepwise») подходе переменные добавляются (или удаляются) по одному за раз к (из) совокупности независимых переменных до тех пор, пока изменения не становятся статистически незначимыми (или значимыми). Кроме того, совокупность переменных может добавляться (или удаляться) в целях оценки их вклада в множественную корреляцию; в этом случае для определения статистической значимости их эффекта применяется F-критерий. Нелинейные связи можно оценить путем включения в правую часть уравнения регрессии членов более высокого порядка и/или мультипликативных членов.

Веса или коэффициенты регрессии определяются с наибольшей надежностью в тех случаях, когда независимые переменные являются относительно некоррелированными. Наличие высоких интеркорреляций между нек-рыми из них называется «мультиколлинеарностью» и приводит к получению коэффициентов регрессии, величина к-рых может заметно и нерегулярно изменяться от выборки к выборке. М. р. широко применяется для решения следующих задач:

1. Получение наилучшего линейного уравнения прогноза.

2. Контроль за смешиванием переменных (факторов).

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

3. Оценка вклада определенной совокупности переменных.

4. Объяснение сложного на вид многомерного комплекса взаимосвязей.

5. Проведение дисперсионного и ковариационного анализов посредством кодирования уровней независимых переменных.

Поделись с друзьями