Стандартные методы исключения тренда основываются на аппроксимации исходного ряда определенной зависимостью. После определения параметров используемой модели считается, что уравнения тренда теперь известны.
В действительности, использование этого метода не гарантируют исключение тренда без потери существенной информации о процессе или возникновения колебаний, изначально не присутствующих в исследуемых эмпирических данных. Это происходит из-за несоответствия используемых моделей свойствам реальных процессов.
При исследовании оставшихся после исключения тренда колебаний возникают аналогичные проблемы. Исследуемым колебаниям навязывается определенная структура, например, ряд Фурье. Эффективный анализ колебаний возможен, когда структура модели соответствует исходным данным, что на практике встречается довольно редко. Их несоответствие компенсируется изменением структуры самой модели до тех пор, пока полученный результат не будет отвечать определенным критериям. Однако, при этом теряется физический смысл получаемых параметров, становится неясной их связь с реальным процессом.
Поможем написать любую работу на аналогичную тему