Эксперимент - это метод познания, базирующийся на управлении поведением объекта с помощью ряда факторов, контроль за действием которых находится в руках исследователя.
Эксперимент не вытеснил полностью наблюдение. Наблюдение в условиях эксперимента фиксирует воздействие на объект и реакцию объекта. Без этого эксперимент идет вхолостую. Например, закон Ома для участка цепи гласит: для металлов и электролитов сила тока в цепи пропорциональна приложенному напряжению. Чтобы эту закономерность проверить экспериментально, надо менять напряжение в цепи и наблюдать (фиксировать), как при этом меняется сила тока.
Главное отличие эксперимента от наблюдения заключается в том, что даже в самом простом эксперименте создается искусственная система элементов, ранее не встречающаяся в практике человека. Эта искусственная система будет экспериментальной установкой.
Главное требование к эксперименту - воспроизводимость его результатов. Это означает, что эксперимент, проведенный в разные моменты времени, при прочих равных условиях, должен давать один и тот же результат. Тем не менее не всякий биологический эксперимент, например, можно повторить сколько угодно раз (пересадка сердца и т.д.). Такой повтор возможен в принципе. Но есть еще и вопрос о целесообразности повтора.
В зависимости от предмета исследования эксперимент подразделяют на естественнонаучный, технический и социальный. Выбор то или иного вида эксперимента, как и план его осуществления, зависит от исследовательской задачи. В этой связи эксперименты подразделяют на: поисковые, измерительные, контрольные, проверочные.
Поисковые эксперименты ставятся для обнаружения неизвестных объектов или свойств. Измерительные – для установления количественных параметров изучаемого предмета или процесса.
Контрольные – для проверки полученных ранее результатов. Проверочные – для подтверждения или опровержения определенной гипотезы или некоторого теоретического утверждения.
Современный эксперимент теоретически нагружен. Действительно:
- в эксперименте используются приборы, а они представляют собой материализованный результат предшествующей теоретической деятельности;
- всякий эксперимент строится на основе какой-то теории, и если теория разработана хорошо, то заранее известно, к какому результату приведет эксперимент;
- эксперимент, как правило, дает не непрерывную картину процесса, а лишь его узловые точки. Только теоретическое мышление способно восстанавливать по ним весь процесс;
- при обработке данных экспериментов надо проводить усреднения, применять теорию ошибок.
Теоретическая нагруженность эксперимента возрастает. Причина этого - возникновение математической теории эксперимента, использование которой уменьшает число проб в эксперименте, увеличивает его точность.
Чтобы хорошо понимать возможности и границы применимости теории планирования эксперимента, создания автоматизированных систем управления экспериментом, необходимо учитывать, что все решения и действия экспериментатора условно можно разбить на два типа:
1) основанные на подробном и скрупулезном изучении конкретного явления;
2) основанные на более общих свойствах, характерных для множества явлений и объектов.
Первые решения и действия назовем эвристическими, а вторые - формализуемыми. Если речь идет об эвристической части, то здесь успех определяется уровнем подготовки экспериментатора в конкретной области знания, а также его интуицией. Математическая теория эксперимента занимается изучением лишь формализуемой части экспериментальной деятельности. Успех здесь целиком определяется разработанностью теории и уровнем подготовки экспериментатора в рамках этой теории.
Важнейшим понятием теории планирования эксперимента является понятие фактора. Фактором называется управляемая независимая переменная, соответствующая одному из возможных способов воздействия на объект исследования. Часто такие переменные называют регулируемыми факторами. В качестве регулируемых факторов могут выступать температура, давление, состав реакционной смеси, концентрация и т.д. В каждом конкретном случае количество этих факторов и их числовые значения четко определены. Выбирая факторы, желательно учесть как можно большее их количество. Они устанавливаются по результатам обзора литературы, изучения физической сущности процесса, логических рассуждений и опроса специалистов.
Выбранные для эксперимента количественные и качественные состояния факторов носят название уровней фактора. В качестве факторов целесообразно выбирать такие независимые переменные, которые соответствуют одному из разумных воздействий на объект исследования и могут быть измерены имеющимися средствами с достаточно высокой точностью.
Основные требования, предъявляемые к факторам, такие:
а) управляемость, т.е. возможность установки и поддержания выбранного нужного уровня фактора постоянным в течение всего опыта и его изменения по заданной программе. Требование управляемости связано с необходимостью изменять факторы в ходе эксперимента на нескольких уровнях, причем в каждом отдельном опыте уровень варьирования должен поддерживаться достаточно точно.
б) совместимость, т.е. осуществимость любых комбинаций факторов. Совместимость факторов означает, что все их комбинации могут быть осуществлены на практике. Это требование серьезно, поскольку в ряде случаев несовместимость факторов может привести к разрушению установки (например, в результате образования смеси газов, склонных к самовзрыванию) или измерительных приборов.
в) независимость, т.е. возможность установления факторов на любом уровне вне зависимости от уровня других факторов. Понятие независимости предполагает, что фактор не является функцией других факторов. В частности, такой фактор, как температура помещения, является функцией других факторов: числа излучателей тепла и их расположения, и т.д.
г) точность измерения и управления должна быть известна и достаточно высока (хотя бы на порядок выше точности измерения выходного параметра). Низкая точность измерения факторов уменьшает возможность воспроизведения эксперимента;
д) между факторами и выходным параметром должно существовать однозначное соответствие, т.е. изменение факторов повлечет за собой изменение выходного параметра;
е) области определения факторов должны быть таковы, чтобы при предельных значениях факторов выходной параметр оставался в своих границах.
На эксперимент действуют и неконтролируемые факторы - это неконтролируемые условия проведения опытов. Описать их все в принципе невозможно, да и не нужно.
Следующим важным понятием математической теории эксперимента является понятие “функция отклика”. Что же стоит за эти понятием?
Протекание процесса количественно характеризуется одной или несколькими величинами. Такие величины в теории планирования эксперимента называются функциями отклика. Они зависят от влияющих факторов.
Под математическим описанием процесса будем понимать систему уравнений, связывающих функции отклика с влияющими факторами. В простейшем случае это может быть одно уравнение. Часто такое математическое описание называют математической моделью изучаемого процесса. Ценность математического описания изучаемого явления заключается в том, что оно дает информацию о влиянии факторов, позволяет количественно определить значение функции отклика при заданном режиме ведения процесса, может служить основой для оптимизации изучаемого процесса.
При выборе выходного параметра необходимо учитывать такие требования:
а) выходной параметр должен иметь количественную характеристику, т.е. должен измеряться;
б) он должен однозначно оценивать (измерять) работоспособность объекта исследования;
в) он должен быть таким, чтобы было возможно четко различать опыты;
г) он должен отражать как можно более полно сущность исследуемого явления;
д) он должен иметь достаточно четкий физический смысл.
Удачный выбор выходного параметра в значительной степени определяется уровнем знания изучаемого явления.
Можно применять два и более выходных параметра, но тогда задача резко усложняется. Необходимо учитывать, что факторы выбираются только после того, как выбран выходной параметр (или параметры).
Процесс контролируется с помощью приборов, измеряющих входные и выходные параметры. Для краткосрочных исследований рекомендуется применять показывающие средства контроля, а для долговременных - записывающие.
Пространство, координатами которого являются факторы, принято называть факторным пространством, или пространством независимых переменных. Математический анализ планирования эксперимента сводится к выбору оптимального расположения точек в факторном пространстве, обеспечивающих получение наилучших в определенном смысле результатов исследования.
Современные экспериментальные исследования обладают такими особенностями:
1. Невозможностью наблюдения исследуемых явлений с помощью только органов чувств субъекта-экспериментатора (низкие или высокие температуры, давление, вакуум и т.д.);
2. Естествознание XIX века старалось в эксперименте иметь дело с хорошо организованными системами, т.е. изучать системы, зависящие от небольшого числа переменных. Идеалом, например, физика-экспериментатора был однофакторный эксперимент. Его суть в следующем: предполагалось, что исследователь мог с любой степенью точности стабилизировать все независимые переменные изучаемой системы. Затем, поочередно изменяя некоторые из них, он устанавливал интересующие его зависимости. Вот пример однофакторного эксперимента. Рассмотрим газ, который находится при определенных температуре, давлении, объеме. Каждый из названных параметров системы (температура, давление, объем) можно сделать постоянным. Так можно, скажем, изучать изменение объема газа при изменении давления, если температура постоянная, т.е. провести изотермический процесс. Аналогично проводят изобарический и изохорический процессы.
Во второй же половине XX века возникла необходимость проводить эксперименты с диффузными, т.е. плохо организованными системами. Их особенность заключается в том, что в таких системах одновременно проходит несколько различных по своей природе процессов. Причем они настолько тесно связаны друг с другом, что их в принципе нельзя рассматривать изолированно друг от друга. Например, это физические процессы, которые происходят между катодом и анодом в лампе, это эмиссионный спектральный анализ и др.;
З. Использование фильтрующих приборов. Суть: далеко не все сигналы, выдаваемые экспериментально, имеют одинаковую ценность. Нередко трудно из большого количества информации выявить ту, которая является существенной. В таких ситуациях применяются фильтрующие приборы. Это автоматы, способные проводить отбор поступающих сигналов и выдавать исследователю ту информацию, которая нужна для решения поставленной задачи.
Пример. В физике микромира известно, что одна и та же частица может распадаться по нескольким каналам. Вероятности распадов по разным каналам различны. Некоторые из них ничтожно малы. Например, К+ -мезон распадается по семи каналам. Распад К+ - мезона, идущий с малой вероятностью, очень трудно зафиксировать, если результаты эксперимента обрабатывать вручную. Здесь-то и применяются фильтрующие приборы. Они автоматизируют поиск нужного вида распада элементарной частицы;
4. Для современных экспериментов характерны использование сложного оборудования, большой объем измеряемых и регистрируемых параметров, сложность алгоритмов обработки полученной информации.
Все эксперименты ставятся с такими целями:
1) для получения новых эмпирических данных, подлежащих дальнейшему обобщению;
2) для того, чтобы подтвердить или опровергнуть уже имеющиеся идеи и теории, причем надо уяснить, что эксперимент в теории подтверждает, а что нет.
В эксперименте проверяется не теория в целом, а ее наблюдаемые следствия. Посредством измерений сопоставляются две группы фактов: предсказываемые теорией и находимые в результате измерения. Если нет хотя бы приблизительного их совпадения, теория, даже будучи логически стройной, не может быть признана удовлетворительной. Вместе с тем, эксперимент не позволяет сделать абсолютного вывода о правильности теории. Получив экспериментальное подтверждение теоретического положения, далеко не всегда можно гарантировать, что эксперимент подтвердил только его. Исследователю не всегда известно, скольким еще другим допустимым предположениям удовлетворяет полученный результат. С этим, в частности, связана невозможность “решающего эксперимента”. Эксперимент с абсолютностью подтверждает не само теоретическое построение, а его специфическую интерпретацию.
В ряде случаев наблюдение и во всех случаях эксперимент связаны с измерением определенных характеристик изучаемой системы.
Что же такое измерение?
Процедура установления одной величины с помощью другой, принятой за эталон, называется измерением. Измерение связывает наблюдение с математикой и позволяет создавать количественные теории.
Способ измерения включает в себя три главных момента:
а) выбор единицы измерения и получение соответствующего набора мер;
б) установление правила сравнения измеряемой величины с мерой и правила сложения мер;
в) описание процедуры измерения.
Итак, измерение предполагает проведение той или иной физической процедуры, но не сводится к ней. Измерение для выполнения своей цели должно привлекать также определенную теорию. Необходимо также знать и теорию прибора, так как без такого знания его показания останутся для нас непонятными.
Цель наблюдений и экспериментов - давать науке факты. Что же понимается под фактом?
В литературе встречаются разные определения факта. Будем считать фактом эмпирическое знание, которое или выполняет функцию исходного момента в построении научной теории, или играет роль проверки ее истинности. Кстати, теоретическое знание тоже может выполнять эти две названные функции. И тогда оно будет выступать в роли факта.
Так как факт - это элемент знания, то он часто сливается со своим объяснением. Очень важно всегда максимально очищать факты от их объяснения. Почему? Если мы за реальный факт выдадим факт уже объясненный, то тем самым необоснованно наложим запрет на другие возможные объяснения данного факта. Однако необходимо учитывать, что фактов в чистом виде не существует. На всяком факте лежит печать существующего знания. Как форма знания для естествознания факт ценен тем, что он обладает известной инвариантностью в различных системах знания.
Поможем написать любую работу на аналогичную тему