Галактиками называются гигантские (до~1013 звёзд) звёздные системы, расположенные вне нашей Галактики. Их называют ещё внегалактическими туманностями, т. к. при визуальном наблюдении в телескоп они выглядят туманными пятнышками, как и обычные газовые туманности. Сведения о галактиках приводятся в специальных астрономических каталогах.
Формы галактик чрезвычайно разнообразны. Однако большинство галактик относят к нескольким основным типам, руководствуясь их наиболее характерными внешними признаками, а более мелкие различия галактик помогают подразделить эти типы на отдельные подтипы. Классифицировать галактики по морфологическим особенностям предложил Хаббл. Около 25% изученных галактик имеет круглую или эллиптическую форму, поэтому их называют эллиптическими галактиками (в классификации этот тип обозначают символом Е). Это наиболее простые по структуре, звёздному составу и характеру внутренних движений системы.
В них не обнаружено звёзд высокой светимости (сверхгигантов), самые яркие звёзды в эллиптических галактиках - красные гиганты. Поверхностная яркость этих систем плавно убывает примерно обратно пропорционально квадрату расстояния от ядра, постепенно сливаясь без скачков с окружающим фоном неба. Расширение линий в спектрах эллиптических галактик указывает на то, что звёзды в них движутся в самых произвольных направлениях с высокими скоростями (200 км/с). В этих условиях распределение звёзд во всех радиальных направлениях от центра симметрии должно быть почти равновероятным, что и объясняет близкую к сфероидальной форму таких звёздных систем. Эллиптические туманности в зависимости от степени видимого сжатия подразделены на восемь подтипов: от сферических систем Е0 до чечевицеобразных Е7 (цифра указывает степень сжатия).
Другой, самый распространённый тип галактик (их около 50%) отличается большим разнообразием структуры. Эти звёздные системы имеют два или более клочковатых спиральных рукава, образующих плоский "диск. В центральной области галактик расположено сфероидальное вздутие (балдж), в котором находится ядро галактики. Такие галактики называют спиральными и обозначают символом S. Спиральные рукава, как правило, богаты яркими газовыми туманностями, окружающими горячие звёзды-сверхгиганты, а также облаками тёмной газово-пылевой материи. Примерно у половины спиральных галактик рукава начинаются сразу от ядра (это нормальные спиральные галактики), у остальных галактик через ядро проходит яркая перемычка (бар), идущая далеко за пределы ядра (пересечённые спиральные галактики). От концов перемычки и начинают закручиваться спиральные рукава.
И нормальные (S), и пересечённые (SB) спиральные галактики подразделяются ещё на подтипы Sa, Sab, Sb, Sc, SBa и т. д. по относительным размерам ядра и диска (размеры ядра убывают от Sa к Sc). Некоторые из спиральных систем видны в профиль как толстое (в случае Sa) или тонкое веретено, обычно пересечённое полосой тёмного вещества, поглощающего свет.
Наша Галактика, как известно, также является спиральной, вероятнее всего типа Sb. По-видимому, спиральные галактики окружены сфероидальной звёздной короной, в которой содержится значительная часть массы галактик.
Если проследить изменение форм эллиптических галактик от сферической до чечевицеобразной и форм спиральных галактик от Sa ко всё более сплюснутой системе Sc, то напрашивается вывод о существовании ещё одного типа галактик, промежуточного между этими основными. На рис. 2 приведена одна из морфологических классификаций галактик - так называемый камертон Хаббла.
Рис. 2. Схема классификации галактик (по Э. Хабблу).
Гипотетический тип получил в этой схеме символ S0; он был сначала предсказан, а затем найден. В галактиках этого типа (их около 20% от общего числа встречающихся вблизи нашей Галактики), в отличие от эллиптических систем, яркость от центра к краю падает ступеньками. В такой системе различают ядро, "линзу" и слабый "ореол". Эти галактики называют линзообразными. В наружных частях линзы иногда видны зачатки спиральных рукавов, перемычки и наружное светлое кольцо. Сочетание этих деталей придаёт системам иногда совершенно необычный вид.
Остающиеся 5% галактик не удаётся отнести ни к одному из перечисленных типов, они образуют тип неправильных галактик (символ Ir). У таких галактик часто отсутствует симметрия формы. По меткому замечанию амер. астронома В. Бааде, этот тип явился "мусорной корзиной" для галактик, не поддающихся классификации. Действительно, в этом типе чисто условно объединено нескольких. разных по характеру классов галактик. Наиболее распространены неправильные галактики типа Магеллановых Облаков, названные так по имени ближайших к нам звёздных систем, видимых невооружённым глазом в южном полушарии. В сущности, эти звёздные системы - предельный случай спиральных галактик, когда они чрезвычайно плоски и в них совершенно отсутствует центральное ядро, хотя и есть следы спиральной структуры, свидетельствующей об осевом вращении систем. Другой класс неправильных галактик очень странен: по цвету и плавному изменению яркости к краям они сходны с эллиптическими, а по спектру - со спиральными системами. Однако в них нет типичных для спиральных систем звёзд-сверхгигантов и ярких газовых туманностей. Примером таких звёздных систем является М82 - неправильная галактика, в центральной части которой обнаружены облака газа, движущиеся со скоростями более тысячи км/с во все стороны. К неправильным галактикам относятся также пекулярные, каждая из которых имеет совершенно уникальную форму. Среди них в специальный класс выделены так называемые взаимодействующие галактики. Это обычно двойные галактики, между которыми наблюдаются перемычки, хвосты или мостики светлой и тёмной материи и т. д. Все эти особенности считают признаками взаимного влияния близко расположенных галактик.
Форма и структура галактик неразрывно связаны с их основными физическими характеристиками: размером, массой, светимостью. При равных расстояниях до галактик их видимые размеры, а также массы возрастают по мере перехода от менее ярких галактик к более ярким. Видимую яркость (блеск) галактик принято выражать в фотографических звёздных величинах, определяемых фотометрированием их изображении на снимках. Если галактика превосходит другую однотипную галактику по абсолютной звездной величине на единицу, то их диаметры соответственно будут различаться в полтора раза, а массы - в два (для спиральных) или в три раза (для эллиптических галактик).
Массы галактик принято выражать числом солнечных масс (масса Солнца mc=1033). Определить массу звёздной системы можно несколькими способами. Наиболее точный способ заключается в наблюдении скоростей вращения периферийных, промежуточных и центральных частей спиральных галактик. Спиральные галактики. вращаются вокруг своей оси не как твёрдый однородный по массе диск, а дифференциально - по закону, который зависит от распределения массы.
По мощности излучения галактики можно подразделить на несколько классов светимости. Самый широкий диапазон светимостей наблюдается у эллиптических галактик. В центральных областях некоторых скоплений галактик обнаружены так называемые cD-галактики, являющиеся рекордными по светимости.
Большинство галактик входят в группировки, насчитывающие от нескольких ярких членов (группы галактик) и до сотен и тысяч членов (скопления галактик). Яркие одиночные галактики редки - их не более 10% от общего числа галактик.
Наиболее исследована Местная группа галактик, в которой самыми яркими и массивными является наша Галактика и туманность Андромеды. Каждая из них имеет по богатому семейству.
В Семейство нашей Галактики входят 14 карликовых эллиптических галактик, несколько внегалактических шаровых скоплений и неправильные галактики, среди которых крупнейшие - Магеллановы Облака.
Скопления галактик состоят, как правило, из эллиптических и линзообразных галактик, число спиральных галактик в них очень мало. Всего пока выявлено около 50 сверхскоплений, которые слагаются из десятков отдельных крупных скоплении галактик, но наряду с ними существуют и просто скопления галактик, не входящие в коллективы более высокого ранга.
Наша галактическая система — рядовая звездная система. На небе в ясную безлунную ночь хорошо видна яркая белесоватая полоса — Млечный Путь.
Галактика — это гигантская звездная система, состоящая почти из 200 млрд звезд, и Солнце — одна из них. Вообще галактики — огромные вращающиеся звездные системы. Они различаются и по внешнему виду, и по характеристикам. Помимо звезд, в галактики входит межзвездное вещество: газ, пыль, частицы космических лучей. Считают, что некоторые галактики по ряду свойств и по внешнему виду похожи на нашу Галактику, называемую Млечный Путь. Из их фотографий можно заключить, что это достаточно тонкий диск с утолщением в центре. В этом месте Галактика простирается на область с радиусом в 25 кпк и толщиной около 2 кпк, на расстоянии в 10 кпк от центра находится Солнечная система. Она движется вокруг центра Галактики почти по окружности со скоростью 240 км/с.
Орбита Солнца лежит в плоскости Галактики, один оборот длится 240 млн лет. Maccа центральной части Галактики порядка 3∙1041кг. Предполагают, что большая масса рассредоточена на периферии Галактики, в области радиусом около 100 кпк. Многие звезды образуют группы — скопления. Эволюционные процессы связаны с такими характеристиками звезд, как возраст, химический состав, характеристики движений и пространственное расположение.
Возраст звезд находится в достаточно большом диапазоне значений: от сотен тысяч лет (возраст самых молодых звезд) до 15 млрд лет (возраст Вселенной). Есть звезды, образующиеся на наших глазах и находящиеся в протозвездной стадии.
Все звезды, по терминологии Бааде, предложенной в 1944 г., принято называть звездным населением. В плоскости Галактики расположены звезды молодые и среднего возраста население I, или диска (звезды Главной последовательности спектральных классов О и В самые молодые и горячие, G, К, М — карлики). Это рассеянные звездные скопления, горячие звезды - гиганты и сверхгиганты, сверхновые звезды, долгопериодические цефеиды, молекулярные облака, светлые и темные туманности. Возраст их порядка 107-108 лет, они недавно образовались из межзвездного газа, поэтому находятся в плоскости вблизи него. Сейчас межзвездного газа по массе немного - около 5 % общей массы, и он сконцентрирован в спиральных рукавах. Наше Солнце находится посередине между двумя спиральными рукавами (см. рис. 4). Самые старые составляют население II, или гало (шаровые скопления, содержащие до 1 млн звезд; рассеянные скопления, содержащие лишь 100-1000 звезд; ( субкарлики II переменные типа RR Лиры); к старым относятся красные карлики, красные гиганты и цефеиды. Их возраст порядка 1010 лет.
Старые объекты находятся ближе к центру Галактики.
а б
Рис. 4. Положение Солнечной системы в Галактике (отмечено крестиком): а — вид сверху; б — вид сбоку.
Промежуточную по возрасту группу занимают звезды, заполняющие диск Галактики толщиной около 1кпк. Это новые звезды, планетарные туманности, яркие красные гиганты, расположенные в ядре Галактики.
Сравнительно молодые звезды верхней части Главной последовательности входят обычно в состав рассеянных скоплений. Непосредственному наблюдению доступны около 1 000 таких скоплений, и все они принадлежат диску. Кроме рассеянных скоплений, в Галактике более 100 шаровых скоплений. Они получили такое наименование потому, что в центре скопления блеск близко расположенных звезд сливается в яркий фон. Ближайшее шаровое скопление можно видеть в созвездии Центавра даже невооруженным глазом в виде размытого пятна. Шаровые скопления очень устойчивы, они образуют сферическую подсистему. В них много бело-голубых звезд и мало красных гигантов. Многие из шаровых скоплений являются источниками мощного рентгеновского излучения. Это объясняют аккрецией (падением) межзвездного газа на черные дыры, находящиеся, по мнению некоторых ученых, в центре шаровых скоплений.
Межзвездный газ относят к населению диска, поскольку по своему химическому составу, расположению и характеру движения он ближе всего к молодым звездам. В спектрах были открыты линии межзвездного натрия, калия, железа, титана и водорода (по косвенным данным, например, потому, что водород образует вместе с атомом углерода молекулу СН). Измерения взаимных положений компонентов в спектрах позволили составить схемы обращения облаков вокруг центра Галактики. В 1951г. советские астрономы Г.А.Шайн и В.Ф.Газе при фотографировании неба сквозь светофильтры, выделяющие отдельные эмиссионные линии водородной серии Бальмера, открыли более 200 туманностей, которых не видно на обычных фотографиях. Сейчас установлено, что средняя плотность водорода в межзвездной среде порядка 0,1 частицы в 1 см3, тогда как в плотных облаках - до нескольких тысяч. Соотношение водорода и гелия в межзвездной среде оценивается как 9:1. В спиральных рукавах плотность водорода примерно на порядок выше, чем между рукавами.
Межзвездная среда ослабляет свет звезд примерно на 0,6 звездной величины на 1пк, как доказал в 1847г. русский астроном В.Я.Струве, а советский ученый П.П.Паренаго вывел формулу учета этого ослабления. Межзвездная среда похожа на пыль, концентрация которой в 100 раз меньше газовой. Ее частицы напоминают ледяные загрязненные кристаллики с Т≈17К. Газопылевые облака поглощают свет далеких звезд, при этом их поглощательная способность пропорциональна 1/λ. Например, ядро Галактики удается наблюдать только в инфракрасном и радиодиапазонах. В центре Галактики обнаружен мощный источник радиоизлучения Стрелец А. В нем предполагают наличие массивной черной дыры, окруженной газовым диском диаметром около 1 млрд км. Из ядра, линейные размеры которого оценивают в 4 тыс. св. лет, с огромными скоростями (до 600 км/с) выбрасываются сгустки вещества, масса которых за год оценивается в массу Солнца. В основном облака концентрируются вблизи галактической плоскости. Туманности скрывают тайны строения нашей Галактики.
Ядро Галактики изучено плохо, поскольку центральная область почти недоступна для наблюдений из-за сильного поглощения в межзвездной среде. Наблюдения в разных областях спектра позволили установить размер ядра примерно в несколько килопарсек. Плотность звезд достигает 107 звезд/пк3, тогда как вблизи Солнца — 0,1 звезд/пк3. В центре Галактики находится источник нетеплового излучения (Стрелец А); вероятно, очень быстрые электроны, которые возникают при вспышках сверхновых звезд или пульсаров, ускоряются в магнитных полях. Мощное излучение от ядра существует в радиодиапазоне и в инфракрасной области. Есть предположения, что это массивное быстро вращающееся плазменное тело — «магнетоид» или черная дыра.
Движения старых и молодых звезд в Галактике имеют различия. У старых — большие эксцентриситеты орбит, а молодые движутся почти по окружностям. Получаются две подсистемы: молодые звезды быстро вращаются внутри почти неподвижной системы более старых звезд. Оказалось, старое население Галактики более или менее равномерно занимает почти сферический объем, концентрируясь ближе к центру, а молодое — концентрируется в диске, толщина которого в десятки раз меньше радиуса. Поэтому на больших расстояниях от центра преобладает излучение звезд диска, а вблизи центра — излучение сферической подсистемы. Возникает некое утолщение диска в его центре. Советский ученый Б.В. Кукаркин выделил в Галактике три подсистемы: плоскую, промежуточную и сферическую, различающиеся по степени сосредоточенности звезд. Он показал, что звезды с одинаковыми физическими характеристиками одинаково распределены в пространстве. Вблизи Солнца пространственные скорости звезд различны по величине и направлению и составляют относительно Солнца 20-30 км/с.
Обнаруживается и вращение вокруг центра Галактики. Участвуя в общем движении Галактики, Солнце вместе со своей системой движется со скоростью 240 км/с и делает полный оборот вокруг центра за 240 млн лет. Этот промежуток времени называют галактическим годом. Направляя радиотелескоп в разные участки Млечного Пути, ученые изучили распределение водорода в пространстве облаков, линия водорода на λ=21см оказалась расщепленной на несколько отдельных компонентов. По водородным линиям установлены спиральные рукава, вдоль которых образуются молодые звезды.
Лучевые скорости звезд определяют по доплеровскому смещению спектральных линий. Сравнение фотографий звезд, сделанных через достаточно большие интервалы времени, показывает наличие двух составляющих — лучевой (по направлению к наблюдателю) и тангенциальной. Для представления о пространственной скорости необходимо знать обе составляющие. Если лучевую определяют по эффекту Доплера, то для расчета тангенциальной составляющей нужно знать и расстояние до звезды. Звезды гало и диска Галактики различны и по своим пространственным скоростям: у звезд гало скорости в 4-5 раз больше.
Отличия химического состава (различное содержание тяжелых элементов) звезд гало и диска позволили выстроить последовательность жизни звезд. Предполагается, что Галактика как система звезд образовалась примерно 13 млрд лет назад. На «дозвездной», или «до-галактической», стадии развития вещество Вселенной не содержало никаких элементов, кроме водорода (3/4) и гелия (1/4). Гравитационные силы сжимали облако, и возникли первые неоднородности, среди которых выделились области с большой плотностью и в которых начался процесс звездообразования. Возникли и первые скопления звезд. Появились шаровые и рассеянные скопления, в них сформировалось некоторое количество звезд классов О и В. Они «сгорели» за 1 млрд лет, закончив свою эволюцию вспышкой сверхновой.
Более тяжелыми элементами обогатили межзвездную среду оболочки взрывающихся звезд. Первые поколения звезд содержат элементы более тяжелые, условно их называют металлами.
Появление тяжелых элементов говорит о том, что, прежде чем попасть в эти звезды, первичное вещество подверглось каким-то ядерным превращениям и обогатилось тяжелыми элементами. Большинство звезд имеют малую массу, которой недостаточно для выработки тяжелых металлов путем термоядерных реакций. Такие звезды, как наше Солнце, способны только превращать водород в гелий, поэтому их химический состав не меняется и соответствует тем химическим элементам, из которых они образовывались.
Совокупность галактик всех типов, квазаров, межгалактической среды образует Метагалактику - доступную наблюдениям часть Вселенной. Метагалактика, как и составляющие её системы, имеет специфические свойства, особенности структуры и следует собственным закономерностям развития. Красное смещение отражает, по сути дела, одно из важнейших свойств Метагалактики. Смещение линий в спектрах галактик в сторону длинных волн связано с увеличением размеров Метагалактики - "разлётом" скоплений галактик. Попытки иначе объяснить красное смещение не удались. Более того, всё новые и новые факты наблюдений, например, открытие реликтового излучения, получают своё естественное объяснение только при подобном толковании красного смещения.
Из явления расширения Метагалактики вытекает, в частности, что раньше расстояния между галактиками и скоплениями галактик были меньше. А если учесть, что сами галактики в ранние эпохи развития были протяжёнными и разреженными газовыми облаками, то когда-то, миллиарды лет назад, границы этих облаков смыкались, т.е. все они выделялись из первоначально почти однородной газовой среды, находящейся в состоянии быстрого расширения.
Другое важное свойство Метагалактики - закономерность распределения в ней вещества. В галактиках сейчас основная масса вещества сосредоточена в звёздах, и только несколько процентов вещества, главным образом в спиральных и неправильных галактиках, приходится на межзвёздную среду (газ и пыль).
Некоторая часть материи Метагалактики находится в форме излучения и элементарных частиц. Плотность "лучистой" материи составляет менее 10-3 от плотности вещества, но плотность, обусловленная элементарными частицами (главным образом нейтрино, если они обладают массой покоя), может оказаться достаточно большой и довести плотность материи во Вселенной до критического значения ~10-29г/см3. По мере перехода от галактик к системам галактик всё более высоких степеней организации (группы, скопления, сверхскопления) массы вещества в одинаковых объёмах, намного превышающих размеры сверхскоплений, получаются сравнимыми, а средняя плотность вещества оказывается одного порядка. С гораздо большей точностью однородность Вселенной доказывается по наблюдениям реликтового излучения, интенсивность которого одинакова по всем направлениям.
Равномерное распределение материи в масштабах Метагалактики определяет одинаковость свойств материи и пространства во всех частях Метагалактики (однородность) и одинаковость их во всех направлениях (изотропия). Эти важные свойства Метагалактики характерны, по-видимому, для современного состояния Метагалактики, однако в прошлом, в самом начале расширения, анизотропия и неоднородность материи и пространства могли существовать. Поиски следов анизотропии и неоднородности Метагалактики в прошлом представляют собой сложную и актуальную задачу внегалактической астрономии, к решению которой астрономы еще только подходят.
Поможем написать любую работу на аналогичную тему