Теорема Гаусса - Остроградского для потока вектора в вакууме имела вид:
, или
где Q - суммарный заряд, охватываемый замкнутой поверхностью S. В диэлектрике Q складывается из свободных (сторонних) зарядов и связанных зарядов, т.е.
(5)
Можно показать, что .
Подставляя эту формулу в (5), после преобразования получим
(6)
Величину (7)
называют вектором электрического смещения или вектором электрической индукции. Она измеряется, как и , в Кл/м2. Учитывая, что находим
. (8)
Линии вектора могут начинаться или заканчиваться лишь на свободных зарядах, а линии - на свободных и связанных. С учетом (7) формула (6) запишется так
, (9)
т.е. поток вектора электрического смещения через произвольную замкнутую поверхность S равен алгебраической сумме свободных зарядов, охватываемых этой поверхностью.
Это и есть теорема Гаусса - Остроградского в интегральной форме для поля в диэлектрике, которая в дифференциальной форме выглядит так:
= dq/dV, Кл / м (10)
ρ – объемная плотность свободных зарядов.
Поможем написать любую работу на аналогичную тему
Реферат
Теорема Гаусса - Остроградского для поля в диэлектрике. Связь векторов - смещения, - напряженности и - поляризованности
От 250 руб
Контрольная работа
Теорема Гаусса - Остроградского для поля в диэлектрике. Связь векторов - смещения, - напряженности и - поляризованности
От 250 руб
Курсовая работа
Теорема Гаусса - Остроградского для поля в диэлектрике. Связь векторов - смещения, - напряженности и - поляризованности
От 700 руб