Рассмотрим две цилиндрические когерентные световые волны, исходящие из источников
и
, имеющих вид параллельных тонких светящихся нитей (рис.3.2.4).
Область, в которой эти волны перекрываются, называется полем интерференции. Во всей этой области наблюдается чередование максимумов и минимумов интерференции.
Если в поле интерференции внести экран, на нем будет видна интерференционная картина, имеющая вид чередующихся темных и светлых полос.
Вычислим ширину этих полос, если экран параллелен плоскости, проходящей через источники и
.
- Положение точки на экране будем характеризовать координатой х, отсчитываемой в направлении, параллельном прямой
,
- начало отсчета выберем в точке О, относительно которой
и
расположены симметрично.
- На рис.3.2.4
Тогда
- Для получения различимой интерференционной картины расстояние между источниками d должно быть значительно меньше расстояния до экрана
. (d<<
).
- Расстояние х, в пределах которого образуются интерференционные полосы, также много меньше
(х <<
).).
Тогда , и
.
Умножив на показатель преломления среды п,
получим оптическую разность хода
. (3.2.3)
Подставив (3.2.3) в (3.2.1) и (3.2.2), получаем координаты максимумов и минимумов на экране:
где - длина волны в среде.
Расстояние между двумя соседними максимумами называется расстоянием между интерференционными полосами, а расстояние между двумя соседними минимумами – шириной интерференционной полосы. Эти расстояния имеют одинаковые значения
. (3.2.4)
Согласно (3.2.4),
- расстояние между полосами растет с уменьшением расстояния между источниками d.
- При d , сравнимом с
, расстояние между полосами было бы того же порядка, что и
. В этом случае отдельные полосы были бы совершенно неразличимы.
- Чтобы интерференционная картина была отчетливой, необходимо, чтобы
.
Если интенсивность интерферирующих волн одинакова, , то результирующая интенсивность в точках с разностью фаз
равна
.
Т.к. , то согласно (3.2.3),
растет пропорционально х.
Следовательно, интенсивность меняется вдоль экрана по закону квадрата косинуса.
Ширина интерференционных полос и расстояние между ними зависят от длины волны .
- Только в центре картины, при х=0, совпадают максимумы всех длин волн.
- По мере удаления от центра максимумы разных цветов смещаются друг относительно друга все больше и больше. Интерференционная картина смазывается.
Поможем написать любую работу на аналогичную тему