Во многих случаях классические представления неприменимы для описания микрообъектов. В. Гейзенберг (1927) выдвинул идею о принципиальной невозможности измерения определенных пар связанных между собой характеристик частицы так, чтобы они одновременно имели точные значения. Согласно соотношению неопределенностей Гейзенберга, микрочастица (микрообъект) не может иметь одновременно точных значений координаты (х, у, z) и компонентов импульса (рх, py, pz), причем неопределенности этих величин удовлетворяют условию
Δx·Δpx ≥ ħ,
Δy·Δpy ≥ ħ, (74)
Δz·Δpz ≥ ħ,
т. е. произведение неопределенностей координаты и соответствующей ей проекции импульса не может быть меньше величины порядка ħ. Следовательно, чем меньше неопределенность одной из величин (х, у, z или рх, ру, pz), тем больше неопределенность другой. В квантовой теории важна еще одна пара канонически сопряженных величин, для которой соотношение неопределенностей (соотношение неопределенностей для энергии и времени) имеет вид
ΔEΔt ≥ ħ, (75)
где ΔЕ – неопределенность энергии некоторого состояния системы, Δt – промежуток времени, в течение которого оно существует. Поэтому если в классической механике наличие координат и импульсов (скоростей) системы точно задает ее поведение во времени и пространстве, то предсказание поведения квантовой системы должно носить вероятностный характер.
Поможем написать любую работу на аналогичную тему