Способность к взаимодействию различных химических реагентов определяется не только их атомарно-молекулярной структурой, но и условиями протекания химических реакций. К ним относятся термодинамические факторы (температура, давление и др.) и кинетические факторы (все, что связано с переносом веществ, образованием их промежуточных форм). Их влияние на химические реакции вскрывается на концептуальном уровне химии, который обобщенно называют учением о химических процессах.
Учение о химических процессах является областью глубокого взаимопроникновения физики, химии и биологии. В основе этого учения находятся химическая термодинамика и кинетика, которые в равной степени относятся и к химии, и к физике. А живая клетка, исследуемая биологической наукой, представляет собой в то же время микроскопический химический реактор, в котором происходят превращения, изучаемые химией, и многие из которых химия пытается реализовать в макроскопическом масштабе. Изучая условия протекания и закономерности химических процессов, человек вскрывает глубокую связь, существующую между физическими, химическими и биологическими явлениями, и одновременно перенимает у живой природы опыт, необходимый ему для получения новых веществ и материалов.
Большинство современных химических технологий реализуется с использованием катализаторов - веществ, которые увеличивают скорость реакции, не расходуясь в ней.
В современной химий получило развитие также направление, принципом которого является энергетическая активация реагента (то есть подача энергии извне) до состояния полного разрыва исходных связей. В данном случае речь идет о больших энергиях. Это так называемая химия экстремальных состояний, использующая высокие температуры, большие давления, излучение с большой величиной энергии кванта, (ультрафиолетовое, рентгеновское, гамма-излучение). К этой области относятся плазмохимия (химия на основе плазменного состояния реагентов), а также технологии, в которых активация процесса достигается за счет направленных электронных или ионных пучков (элионные технологии).
Химия экстремальных состояний позволяет получать вещества и материалы, уникальные по своим свойствам: композитные материалы, высокотемпературные сплавы и металлические порошки, нитриды, силициды и карбиды тугоплавких металлов, разнообразные по своим свойствам покрытия. Примером могут служить сверхпрочные покрытия из нитрида титана, наносимые на металлообрабатывающий инструмент для многократного увеличения срока его эксплуатации. Интересно, что «золотой» блеск и высокая коррозионная стойкость пленок нитрида титана позволили с успехом применить технологию его нанесения при изготовлении кровли куполов церквей взамен традиционной и дорогой технологии золочения.
Эффективность технологий на основе химии экстремальных состояний очень высока. Характерным для них является энергосбережение при высокой производительности, высокая автоматизация и простота управления технологическими процессами, небольшие размеры технологических установок.
Поможем написать любую работу на аналогичную тему
Реферат
Масштабы химического производства. Перспективные химические процессы и материалы
От 250 руб
Контрольная работа
Масштабы химического производства. Перспективные химические процессы и материалы
От 250 руб
Курсовая работа
Масштабы химического производства. Перспективные химические процессы и материалы
От 700 руб