Нужна помощь в написании работы?

В конце XIX – начале XX вв. в естествознании были сделаны крупнейшие открытия, которые коренным образом изменили наши представления о мире. Оказалось, что положения классической физики совершенно непригодны для исследования микромира. В результате научных открытий были опровергнуты представления об атомах как о последних неделимых структурных элементах материи.

История исследования строения атома началась в 1895 году благодаря открытию Дж. Томпсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Согласно первой модели атома, построенной ученым Э. Резерфор-дом, атом уподоблялся миниатюрной солнечной системе, в которой вокруг ядра враща-ются электроны. Ядро – положительно заряженные микрочастицы, размер которых (10-12 см) очень мал по сравнению с размерами атомов (10-8 см), но в которых почти полностью сосредоточена масса атомов.

Кроме того, было обнаружено, что атомы одних элементов могут превращаться в атомы других в результате радиоактивности, впервые открытой французским физиком А. Беккерелем. Открытие сложной структуру атома стало крупнейшим событием в физике, поскольку оказались опровергнутыми представления классической физики об атомах как твердых и неделимых структурных единицах вещества. Оказались разрушенными и пред-ставления классической физики о веществе и поле как о двух качественно своеобразных видах материи. Изучая микрочастицы, ученые столкнулись с парадоксальной, с точки зрения классической науки, ситуацией: одни и те же объекты обнаруживали как волновые , так и корпускулярные свойства.

Первый шаг в этом направлении был сделан немецким физиком Максом Планком  В конце XIX века в физике возникла трудность, которая получила название ''ультрафиоле-товой катастрофы''. В соответствии с расчетами по формуле классической электро-динамики интенсивность теплового излучения абсолютно черного тела должна была неограниченно возрастать, что явно противоречило опыту. В процессе работы по иссле-дованию теплового излучения, М. Планк пришел к ошеломляющему выводу о том, что в процессах излучения энергия может быть отдана или поглощена не непрерывно и не в любых количествах, а лишь в известных неделимых порциях – квантах. Энергия каждого кванта, согласно Планку, пропорциональна частоте волны, то есть цвету излучаемого света: E = hn, где n – частота излучения, а h – некоторая универсальная константа, получившая название постоянной Планка. О своем открытии Планк доложил 14 декабря 1900 года на заседании Немецкого физического общества. Этот день считается в истории физики днем рождения квантовой теории, открывшей новую эру в естествознании.

Первым физиком, который восторженно принял открытие элементарного кванта действия и творчески развил его был Эйнштейн. В 1905 году он перенес гениальную идею квантового поглощения и отдачи энергии при тепловом излучении на излучение вообще и таким образом обосновал новое учение о свете. Представление о свете как о дожде быстро движущихся квантов было очень смелым, в правильность которого вначале поверили немногие. Прежде всего с расширением квантовой гипотезы до квантовой теории света был не согласен сам Планк, относивший свою квантовую формулу только к законам теплового излучения черного тела.

А. Эйнштейн же утверждал, что здесь речь идет о закономерности всеобщего характера. Он применил гипотезу Планка к свету и пришел к выводу, что следует признать корпускулярную структуру света. Свет есть распространяющееся в мировом пространстве волновое явление, но световая энергия, чтобы быть физически действенной, концентрируется лишь в определенных местах, поэтому свет имеет прерывную структуру. Свет может рассматриваться как поток неделимых энергетических зерен, световых квантов, или фотонов. Эйнштейновское учение о фотонах позволило объяснить явление фотоэлектрического эффекта, суть которого заключается в выбивании электронов из вещества под действием электромагнитных волн. Правильность такого толкования фотоэлектрического эффекта (за эту работу в 1922 году Эйнштейн получил Нобелевскую премию по физике) через 10 лет получила подтверждение в экспериментах американского физика Р.Э. Милликена. Квантовая теория света относится к наиболее подтвержденным экспериментально физическим теориям. Но волновая природа света была уже твердо установлена опытами по дифракции и интерференции.

Возникла парадоксальная ситуация: обнаружилось, что свет ведет себя не только как волна, но и как поток корпускул. В опытах по дифракции и интерференции прояв-ляются его волновые свойства, а при фотоэффекте – корпускулярные. При этом фотон оказался корпускулой совершенно особого ряда. Основная характеристика его дискретности – присущая ему порция энергии – вычислялась через чисто волновую характеристику – частоту. Теория А. Эйнштейна, развивающая взгляды М. Планка позволила Н. Бору разработать новую модель атома.

Поделись с друзьями