Нужна помощь в написании работы?

Закон сохранения энергии хорошо известен: энергия не возникает и не исчезает, а может лишь превращаться в другие виды энергии или переходить от одной физической системы к другой. Во всех процессах энергии изолированной системы сохраняется. Закон сохранения энергии говорит как о количественной неуничтожимости материи и движения, так и их качественной неуничтожимости. Величиной, определяющей качество энергии, является энтропия. Понятие «энтропия» возникло в рамках термодинамики и связано с анализом тепловых процессов, оно характеризует направление протекания самопроизвольных процессов в замкнутой термодинамической системе и является мерой их необратимости. Понятие энтропии  лежит в основе второго начала термодинамики, открытого в 60-е года ХIХ в. Клаузиусом, согласно которому энтропия изолированной системы постоянно возрастает. Другими словами, энтропия теплоизолированной системы всегда только увеличивается, т.е. такая система стремится к тепловому равновесию, при котором энтропия максимальна. Согласно этому закону, тепло не может само собой перейти от системы с меньшей температурой к системе с большей температурой.

Распространив второй закон термодинамики о возрастании энтропии, справедливой для замкнутых систем, не всю бесконечную Вселенную, Клаузиус пришел к выводу о тепловой смерти Вселенной. Согласно его «теории», все виды энергии превращаются в тепловую, энергия обесценивается, утрачивает способность к превращениям, а Вселенная приходит в наиболее вероятное состояние термодинамического равновесия. Энергия хотя и сохраняется количественно, но обесценивается в качественном отношении. Она теряет способность превращаться в другие виды энергии. Любые изменения и существование жизни становится невозможным.

При всей своей внешней логичности «теория» тепловой смерти ведет к парадоксальным выводам. Вселенная существует бесконечно долгое время и в принципе должна бы уже давно достичь состояния равновесия. Однако мы наблюдаем в мире существование многообразных видов энергии и движения, что с точки зрения сторонников этой «теории» является необъяснимым фактом. Выход может быть предложен двоякий: можно допустить, что наша Вселенная, либо существовала конечное время, недостаточное для достижения состояния теплового равновесия, либо она много раз достигала такого состояния, но некоторая сила время от времени выводила из него Вселенную. Оба эти предположения ведут к идее сотворения мира или вмешательства в ход физических процессов сверхъестественных сил.

Существенный вклад в критику «теории» тепловой смерти Вселенной внесли идеи Больцмана, который дал статистическое обоснование второго начала термодинамики. Он исходил из того, что бесконечная Вселенная в бесконечное время имеет вероятность, значительно отклоняющуюся от своего среднего наиболее вероятного состояния, поэтому в отдельных ограниченных областях возможны гигантские  спонтанные отклонения от состояния равновесия. Только после такого отклонения (флуктуации) вступает в силу закон возрастания энтропии, снова приводящей к наиболее вероятному состоянию.

Некоторые ученые очень высоко оценили флуктуационную гипотезу Больцмана. Болгарский физик и философ А.Поликаров писал, что только больцмановская теория избавляет нас от «тепловой смерти». По мнению Я.П. Терлецкого, космологическая флуктуационная гипотеза Больцмана «впервые выразила языком физики идею о вечном кругообороте материи во Вселенной, ранее высказанную Энгельсом». Он считает, что для модели Вселенной Больцмана допущение сотворения является излишним, так как тепловая смерть – удел каждой определенной области пространства и то не на вечные времена, поскольку через достаточно большой промежуток времени возможна новая флуктуация, приводящая этот ограниченный мир вновь в неравновесное состояние. Одно из главных возражений против флуктуационной теории Больцмана, Терлецкий видит в исчезающее малой вероятности больших флуктуаций во Вселенной.

Однако не только в этом несостоятельность теории Больцмана. Она хотя и сыграла положительную роль, но по существу не решает проблемы, так как фактически предполагает состояние абсолютного равновесия, «тепловой смерти» во Вселенной, нарушаемое отдельными флуктуациями, носящими случайный характер.

Неудовлетворительность гипотезы Больцмана обычно рассматривается как свидетельство неприменимости статистических идей Больцмана к бесконечию большим объектам. Возражая против этого, российский математик И.П.Плоткин утверждает, что из статистики Больцмана логически следует не флуктуационная гипотеза, а наоборот – полное отсутствие состояния равновесия у бесконечно большой системы, т.е. не ограниченное ничем развитие Вселенной. Статистическая физика не обнаруживает у бесконечно большой системы наиболее вероятного, т.е. равновесного состояния. Вероятность повторения однажды пережитого такой системой состояния равна нулю. Каждое состояние бесконечно большой системы является, поэтому, совершенно новым и неповторимым: все состояния равновероятны.

Со времени открытия второго закона термодинамики встал вопрос о том, как согласовать вывод о возрастании энтропии в замкнутых системах (возрастание неопределенности, хаоса) с процессами самоорганизации в живой природе, с теорией Дарвина. Ведь она показала, что процесс развития растительного и животного мира характеризуется его непрерывным усложнением, нарастанием высоты организации и порядка. Живая природа почему-то стремилась прочь от термодинамического равновесия и хаоса. Налицо была явная нестыковка законов развития неживой и живой природы.

После замены модели стационарной Вселенной на развивающуюся, в которой ясно просматривалось нарастающее усложнение организации материальных объектов – от элементарных субэлементарных частиц в первые мгновения после Большого взрыва до звездных и галактических систем, - несоответствие законов стало ещё более явным. Ведь если принцип возрастания энтропии универсален, то, как же могли возникнуть такие сложные структуры? Стало ясно, что для сохранения непротиворечивости общей картины мира необходимо постулировать у материи в целом не только разрушительной, но и созидательной тенденции, Материя способна осуществлять работу и против термодинамического равновесия, самоорганизовываться и самоусложняться.

Постулат о способности материи к саморазвитию в философии был разработан достаточно давно. А вот его необходимость в фундаментальных естественных науках начала осознаваться только в последнее время. Исследования показали, что процессы самоорганизации имеют место в системах самой различной природы, в том числе и неорганической. Эти закономерности изучает синергетика - теория самоорганизации.

Поделись с друзьями