Нужна помощь в написании работы?

После триумфа классической механики Ньютона химия в лице Лавуазье, положившего начало систематическому применению весов, встала на количественный путь, а вслед за ней и другие естественные науки. «Таково первое основание, по которому физик не может обойтись без математики; она дает ему единственный язык, на котором он в состоянии изъясняться (А. Пуанкаре). Дифференциальное и интегральное исчисление хорошо подходит для описания изменения скоростей движений, а вероятностные методы—для необратимости и создания нового. Все можно описать количественно, и тем не менее остается проблемой отношение математики к реальности. По мнению одних методологов, чистая математика и логика используют доказательства, но не дают нам никакой информации о мире (почему А. Пуанкаре и считал, что законы природы конвенциальны), а только разрабатывают средства его описания. Однако, еще Аристотель писал, что число есть промежуточное между частным предметом и идеей, а Галилей полагал, что Книга Природы написана языком математики. Не имея непосредственного отношения к реальности, математика не только описывает эту реальность, но и позволяет, как в уравнениях Максвелла, делать новые интересные и неожиданные выводы о реальности из теории, которая представлена в математической форме. Как же объяснить непостижимую истинность математики и ее пригодность для естествознания? Может все дело в том, что «механизм математического творчества, например, не отличается существенно от механизма какого бы то ни было иного творчества» более пригодны более сложные, системные объяснения? По мнению некоторых методологов, законы природы не сводятся к написанным на бумаге математическим соотношениям. Их надо понимать как любой вид организованности идеальных прообразов вещей, или пси-функций. Есть три вида организованности: простейший — числовые соотношения; более сложный — ритмика 1-го порядка, изучаемая математической теорией групп; самый сложный — ритмика 2-го порядка — «слово». Два первых вида организованности наполняют Вселенную мерой и гармонией, третий — смыслом. В рамках этого объяснения математика занимает свое особое место в познании. Так или иначе, подобные методологические разработки тесно связаны с дискуссиями по основаниям математики и перспективам ее развития, сводящимися к следующим основным темам:

1) как математика соотносится с миром и дает возможность познавать его;

2) какой способ познания преобладает в математике — дискурсивный или интуитивный;

3) как устанавливаются математические истины—путем конвенции, как полагал Пуанкаре, или с помощью более объективных критериев.

Поделись с друзьями
Добавить в избранное (необходима авторизация)