Нужна помощь в написании работы?

Клетка представляет биологическую систему, основу которой составляют мембранные структуры, отделяющие клетку от внешней среды, формирующие ее отсеки (компартменты), а также обеспечивающие поступление и удаление метаболитов, восприятие и передачу сигналов и являющиеся структурными организаторами метаболических путей.

Согласованное функционирование мембранных систем – рецепторов, ферментов, транспортных механизмов помогает поддерживать гомеостаз клетки и в то же время быстро реагировать на изменения внешней среды.

Мембраны – нековалентные надмолекулярные структуры. Белки и липиды в них удерживаются вместе множеством нековалентных взаимодействий (кооперативных по характеру).

К основным функциям мембран можно отнести:

1.    отделение клетки от окружающей среды и формирование внутриклеточных компартментов (отсеков);

2.    контроль и регулирование транспорта огромного разнообразия веществ через мембраны (избирательная проницаемость);

3.    участие в обеспечении межклеточных взаимодействий;

4.    восприятие и передача сигнала внутрь клетки (рецепция);

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

5.    локализация ферментов;

6.    энерготрансформирующая функция.

Мембраны асимметричны в структурном и функциональном отношениях (углеводы локализуются всегда снаружи и их нет на внутренней стороне мембраны). Это динамичные структуры: входящие в их состав белки и липиды могут двигаться в плоскости мембраны (латеральная диффузия). Однако существует и  переход белков и липидов с одной стороны мембраны на другую (поперечная диффузия, флип-флоп), которая происходит крайне медленно. Подвижность и текучесть мембран зависят от её состава: соотношениям насыщенных и ненасыщенных жирных кислот, а также холестерола. Текучесть мембраны тем ниже, чем выше насыщенность жирных кислот в фосфолипидах и чем больше содержание холестерола. Кроме того, для мембран характерна самосборка.

 

Общие свойства клеточных мембран:

1.    легко проницаемы для воды и нейтральных липофильных соединений;

2.    в меньшей степени проницаемы для полярных веществ (сахара, амиды);

3.    плохо проницаемы для небольших ионов (Na+, Cl- и др.);

4.    характерно высокое электрическое сопротивление;

5.    асимметричность;

6.    могут самопроизвольно восстанавливать целостность;

7.    жидкостность.

 

Химический состав мембран.

Мембраны состоят из липидных и белковых молекул, относительное количество которых у разных мембран широко колеблется. Углеводы содержатся в форме гликопротеинов, гликолипидов и составляют 0,5%-10% веществ мембраны. Согласно жидкостно-мозаичной модели строения мембраны (Сенджер и Николсон, 1972г.) основу мембраны составляет двойной липидный слой, в формировании которого участвуют фосфолипиды и гликолипиды. Липидный бислой образован двумя рядами липидов, гидрофобные радикалы которых спрятаны внутрь, а гидрофильные группы обращены наружу и контактируют с водной средой. Белковые молекулы как бы растворены в липидном бислое и относительно свободно «плавают в липидном море в виде айсбергов на которых растут деревья гликокаликса».

 

Липиды мембран.

Мембранные липиды – амфифильные молекулы, т.е. в молекуле есть как гидрофильные группы (полярные головки), так и алифатические радикалы (гидрофобные хвосты), самопроизвольно формирующие бислой, в котором хвосты липидов обращены друг к другу. Толщина одного липидного слоя 2,5 нм, из которых 1 нм приходится на головку и 1,5 нм на хвост. В мембранах присутствуют три основных типа липидов: фосфолипиды, гликолипиды и холестерол. Среднее молярное отношение холестерол/фосфолипиды равно 0,3-0,4, но в плазматической мембране это соотношение гораздо выше (0,8-0,9). Наличие холестерола в мембранах уменьшает подвижность жирных кислот, снижает латеральную диффузию липидов и белков.

Фосфолипиды можно разделить на глицерофосфолипиды и сфингофосфолипиды. Наиболее распространенные глицерофосфолипиды мембран – фосфатидилхолины и фосфатидилэтаноламины. Каждый глицерофосфолипид, например фосфатидилхолин, представлен несколькими десятками фосфатидилхолинов, отличающихся друг от друга строением жирнокислотных остатков.

На долю глицерофосфолипидов приходится 2-8% всех фосфолипидов мембран. Наиболее распространенными являются фосфатидилинозитолы.

Специфические фосфолипиды внутренней мембраны митохондрий – кардиолипины (дифосфатидглицеролы), построенные на основе глицерола и двух остатков фосфатидной кислоты, составляют около 22% от всех фосфолипидов митохондриальных мембран.

В миелиновой оболочке нервных клеток в значительных количествах содержатся сфингомиелины.

Гликолипиды мембран представлены цереброзидами и ганглиозидами, в которых гидрофобная часть представлена церамидом. Гидрофильная группа – углеводный остаток – гликозидной связью присоединен к гидроксильной группе первого углеродного атома церамида. В значительных количествах гликолипиды находятся в мебранах клеток мозга, эпителия и эритроцитов. Ганглиозиды эритроцитов разных индивидуумов различаются строением олигосахаридных цепей и проявляют антигенные свойства.

Холестерол присутствует во всех мембранах животных клеток. Его молекула состоит из жесткого гидрофобного ядра и гибкой углеводородной цепи, единственная гидроксильная группа является полярной головкой.

 

Функции мембранных липидов.

Фосфо- и гликолипиды мембран, помимо участия в формировании липидного бислоя, выполняют ряд других функций. Липиды мембран формируют среду для функционирования мембранных белков, принимающих в ней нативную конформацию.

Некоторые мембранные липиды – предшественники вторичных посредников при передаче гормональных сигналов. Так фосфатидилинозитолдифосфат под действием фосфолипазы С гидролизируется до диацилглицерола и инозитолтрифосфата, являющихся вторичными посредниками гормонов.

Ряд липидов участвует в фиксации заякоренных белков. Примером заякоренного белка является ацетилхолинэстераза, которая фиксируется на постсинаптической мембране к фосфатитилинозитолу.

 

Белки мембран.

Мембранные белки отвечают за функциональную активность мембран и на их долю приходится от 30 до 70%. Белки мембран отличаются по своему положению в мембране. Они могут глубоко проникать в липидный бислой или даже пронизывать его – интегральные белки, разными способами прикрепляться к мембране – поверхностные белки, либо, ковалентно контактировать с ней – заякоренные белки.  Поверхностные белки почти всегда гликозилированы. Олигосахаридные остатки защищают белок от протеолиза, участвуют в узнавании лигандов и адгезии.

Белки, локализованные в мембране, выполняют структурную и специфические функции:

  • транспортную;
  • ферментативную;
  • рецепторную;
  • антигенную.

Механизмы мембранного транспорта веществ

 

Различают несколько способов переноса веществ через мембрану:

Простая диффузия – это перенос небольших нейтральных молекул по градиенту концентрации без затрат энергии и переносчиков. Легче всего проходят простой диффузией через липидную мембрану малые неполярные молекулы, такие как О2, стероиды, тиреоидные гормоны. Малые полярные незаряженные молекулы – СО2, NH3, H2O, этанол и мочевина – также диффундируют с достаточной скоростью. Диффузия глицерола идет значительно медленнее, а глюкоза практически не способна самостоятельно пройти через мембрану. Для всех заряженных молекул, независимо от размера, липидная мембрана не проницаема.

Облегченная диффузия – перенос вещества по градиенту концентрации без затрат энергии, но с переносчиком. Характерна для водорастворимых веществ. Облегченная диффузия отличается от простой большей скоростью переноса и способностью к насыщению. Различают две разновидности облегченной диффузии:

а) транспорт по специальным каналам, образованным в трансмебранных белках (например, катионселективные каналы);

б) с помощью белков-транслоказ, которые взаимодействуют со специфическим лигандом, обеспечивают его диффузию по градиенту концентрации (пинг-понг) (перенос глюкозы в эритроциты с помощью белка-переносчика ГЛЮТ-1).

Кинетически перенос веществ облегченной диффузией напоминает ферментативную реакцию. Для транслоказ существует насыщающая концентрация лиганда, при которой все центры связывания белка с лигандом заняты, и белки работают с максимальной скоростью. Поэтому скорость транспорта веществ облегченной диффузией зависит не только от градиента концентраций переносимого вещества, но и от количества беков-переносчиков в мембране.

Простая и облегченная диффузия относится к пассивному транспорту, так как происходит без затраты энергии.

Активный транспорт – транспорт вещества против градиента концентрации (незаряженные частицы) или электрохимического градиента (для заряженных частиц), требующий затрат энергии, чаще всего АТФ.  Выделяют два вида его: первично активный транспорт использует энергию АТФ или окислительно-восстановительного потенциала и осуществляется с помощью транспортных АТФ-аз. Наиболее распространены в плазматической мембране клеток человека Na+,K+- АТФ-аза, Са2+-АТФ-аза, Н+-АТФ-аза.

При  вторично активном транспорте используется градиент ионов, созданный на мембране за счет работы системы первично активного транспорта (всасывание глюкозы клетками кишечника и реабсорбция из первичной мочи глюкозы и аминокислот клетками почек, осуществляемые при движении ионов Na+ по градиенту концентрации).

Перенос через мембрану макромолекул. Транспортные белки обеспечивают перенос через клеточную мембрану полярных молекул небольшого размера, но они не могут транспортировать макромолекулы, например белки, нуклеиновые кислоты, полисахариды или отдельные частицы. Механизмы, с помощью которых клетки могут усваивать такие вещества или удалять их из клетки, отличаются от механизмов транспорта ионов и полярных соединений.

А) Перенос вещества из среды в клетку вместе с частью плазматической мембраны называют эндоцитоз. Путем эндоцитоза (фагоцитоза) клетки могут поглощать большие частицы, такие как вирусы, бактерии или фрагменты клеток. Поглощение жидкости и растворенных в ней веществ с помощью небольших пузырьков называют пиноцитозом.

Б) Экзоцитоз. Макромолекулы, например белки плазмы крови, пептидные гормоны, пищеварительные ферменты синтезируются в клетках и затем секретируются в межклеточное пространство или кровь. Но мембрана не проницаема для таких макромолекул или комплексов, их секреция происходит путем экзоцитоза. В организме имеются как регулируемый так и не регулируемый пути экзоцитоза. Нерегулируемая секреция характеризуется непрерывным синтезом секретируемых белков. Примером может служить синтез и секреция коллагена фибробластами для формирования межклеточного матрикса.

Для регулируемой секреции характерны хранение приготовленных  на экспорт молекул в транспортных пузырьках. С помощью регулируемой секреции происходят выделение пищеварительных ферментов, а также секреция гормонов и нейромедиаторов.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями
Добавить в избранное (необходима авторизация)