Аннуитеты представляют собой наиболее сложные алгоритмы начисления процента — предварительным (пренумерандо) или последующим (постнумерандо).
1. При расчете будущей стоимости аннуитета на условиях предварительных платежей (пренумерандо) используется следующая формула:
где SApre — будущая стоимость аннуитета, осуществляемого на условиях предварительных платежей (пренумерандо);
R— член аннуитета, характеризующий размер отдельного платежа;
i— используемая процентная ставка, выраженная десятичной дробью;
п— количество интервалов, по которым осуществляется каждый платеж, в общем обусловленном периоде времени.
Пример: Необходимо рассчитать будущую стоимость аннуитета, осуществляемого на условиях предварительных платежей (пренумерандо), при следующих данных: период платежей по аннуитету предусмотрен в количестве 5 лет; интервал платежей по аннуитету составляет один год (платежи вносятся в начале года);сумма каждого отдельного платежа (члена аннуитета) составляет 1000 усл. ден. eд.; используемая для наращения стоимости процентная ставка составляет 10% в год (0,1).
Подставляя эти значения в приведенную формулу, получим:
будущая стоимость аннуитета, осуществляемого на условиях предварительных платежей (пренумерандо), равна:
2. При расчете будущей стоимости аннуитета, осуществляемого на условиях последующих платежей (постнумерандо), применяется следующая формула:
где SApost — будущая стоимость аннуитета, осуществляемого на условиях последующих платежей (постнумерандо);
R— член аннуитета, характеризующий размер отдельного платежа;
i — используемая процентная ставка, выраженная десятичной дробью;
п — количество интервалов, по которым осуществляется каждый платеж, в общем обусловленном периоде времени.
Пример: Необходимо рассчитать будущую стоимость аннуитета, осуществляемого на условиях последующих платежей (постнумерандо), по данным, изложенным в предыдущем примере (при условии взноса платежей в конце года).
Подставляя эти данные в приведенную формулу, получим:
будущая стоимость аннуитета, осуществляемого на условиях последующих платежей (постнумерандо), равна:
Сопоставление результатов расчета по двум примерам показывает, что будущая стоимость аннуитета, осуществляемого на условиях предварительных платежей, существенно превышает будущую стоимость аннуитета, осуществляемого на условиях последующих платежей, т.е. в первом случае плательщику обеспечена гораздо большая сумма дохода.
3. При расчете настоящей стоимости аннуитета, осуществляемого на условиях предварительных платежей (пренумерандо), используется следующая формула:
где РАpre— настоящая стоимость аннуитета, осуществляемого на условиях предварительных платежей (пренумерандо);
R — член аннуитета, характеризующий размер отдельного платежа;
i — используемая процентная (дисконтная) ставка, выраженная десятичной дробью;
п — количество интервалов, по которым осуществляется каждый платеж, в общем обусловленном периоде времени.
Пример: Необходимо рассчитать настоящую стоимость аннуитета, осуществляемого на условиях предварительных платежей (пренумерандо), при следующих данных:
период платежей по аннуитету предусмотрен в количестве 5 лет;
интервал платежей по аннуитету составляет один год (при внесении платежей в начале года);
сумма каждого отдельного платежа (члена аннуитета) составляет 1000 усл. ден. eд.;
используемая для дисконтирования стоимости ставка процента (дисконтная ставка) составляет 10% в год (0,1).
Подставляя эти значения в приведенную формулу, получим:
настоящая стоимость аннуитета, осуществляемого на условиях предварительных платежей (пренумерандо), равна:
4. При расчете настоящей стоимости аннуитета, осуществляемого на условиях последующих платежей (постнумерандо), применяется следующая формула:
где PApost— настоящая стоимость аннуитета, осуществляемого на условиях последующих платежей (постнумерандо);
R— член аннуитета, характеризующий размер отдельного платежа;
i — используемая процентная (дисконтная) ставка, выраженная десятичной дробью;
п — количество интервалов, по которым осуществляется каждый платеж, в общем обусловленном периоде времени.
Пример: Необходимо рассчитать настоящую стоимость аннуитета, осуществляемого на условиях последующих платежей (постнумерандо), по данным, изложенным в предыдущем примере (при условии взноса платежей в конце года).
Подставляя эти данные в приведенную формулу, получим:
настоящая стоимость аннуитета, осуществляемого на условиях последующих платежей (постнумерандо), равна:
Сопоставление результатов расчета по двум последним примерам показывает, что настоящая стоимость аннуитета, осуществляемого на условиях предварительных платежей, существенно превышает настоящую стоимость аннуитета, осуществляемого на условиях последующих платежей, т.е. в первом случае в процессе дисконтирования плательщику гарантирована гораздо большая сумма дохода в настоящей стоимости,
5. При расчете размера отдельного платежа при заданной будущей стоимости аннуитета используется следующая формула:
где R— размер отдельного платежа по аннуитету (член аннуитета при предопределенной будущей его стоимости);
SApost — будущая стоимость аннуитета (осуществляемого на условиях последующих платежей);
i — используемая процентная ставка, выраженная десятичной дробью;
п — количество интервалов, по которым намечается осуществлять каждый платеж, в обусловленном периоде времени.
6. При расчете размера отдельного платежа при заданной текущей стоимости аннуитета используется такая формула:
где R — размер отдельного платежа по аннуитету (член аннуитета при известной текущей его стоимости);
PApost— настоящая стоимость аннуитета (осуществляемого на условиях последующих платежей);
i— используемая процентная ставка, выраженная десятичной дробью;
п — количество интервалов, по которым намечается осуществлять каждый платеж, в обусловленном периоде времени.
В процессе расчета аннуитета возможно использование упрощенных формул, основу которых составляет только член аннуитета (размер отдельного платежа) и соответствующий стандартный множитель (коэффициент) его наращения или дисконтирования.
В этом случае формула для определения будущей стоимости аннуитета (осуществляемого на условиях последующих платежей), имеет вид:
SApost = R × lA,
где SApost— будущая стоимость аннуитета (осуществляемого на условиях последующих платежей);
R — член аннуитета, характеризующий размер отдельного платежа;
lA — множитель наращения стоимости аннуитета, определяемый по специальным таблицам, о учетом принятой процентной ставки и количества интервалов в периоде платежей.
Соответственно, формула для определения настоящей стоимости аннуитета имеет вид:
PApost = R × DA,
где PApost— настоящая стоимость аннуитета (осуществляемого на условиях последующих платежей);
R — член аннуитета, характеризующий размер отдельного платежа;
DA — дисконтный множитель аннуитета, определяемый по специальным таблицам, с учетом принятой процентной (дисконтной) ставки и количества интервалов в периоде платежей.
Использование стандартных множителей (коэффициентов) наращения и дисконтирования стоимости существенно ускоряет и облегчает процесс оценки стоимости денег во времени.
Поможем написать любую работу на аналогичную тему