Немецкий физик Р.Клаузиус ввел функцию S, которую он назвал энтропией и сформулировал второй закон термодинамики (1865): “При самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает”.
Вот несколько равноценных формулировок второго начала термодинамики:
1) невозможно построить вечный двигатель второго рода, то есть машину, которая работает за счет тепла окружающей среды;
2) работу можно получить лишь выравнивая перепады каких-либо параметров системы (температуры, давления, электрического потенциала);
3) в замкнутой (то есть не получающей энергии извне) системе прирост энтропии всегда положителен;
4) все самопроизвольно протекающие процессы в замкнутых системах идут в сторону наиболее вероятного состояния системы.
Австрийский физик Л.Больцман открыл физический смысл энтропии и причины ее роста в изолированных системах: энтропия - мера беспорядка в системе. Полный порядок соответствует минимуму энтропии; любой беспорядок увеличивает ее. Максимальная энтропия соответствует полному хаосу. Энтропия жидкости больше, чем твердого тела; а энтропия газа больше чем энтропия жидкости.
Больцман впервые ввел понятие термодинамической “вероятности состояния системы”. Всякая система, состоящая из очень большого числа частиц, будет переходить от состояний менее вероятных к состояниям более вероятным, осуществляющимся большим числом способов.
Когда энтропия системы достигает максимума, то никакие процессы в ней невозможны. Но при этом необходимо различать микропроцессы и макропроцессы. В природе необратимы все макроскопические процессы, они протекают в направлении возрастания энтропии. Необратимым является такой процесс, который в обратном направлении может протекать только как одно из звеньев более сложного процесса.
Одному и тому же макросостоянию может соответствовать множество микросостояний, которые с течением времени непрерывно сменяют друг друга, хотя на макроуровне может не наблюдаться никаких изменений. Действие закона возрастания энтропии при протекании процессов в замкнутых системах проявляется только на макроуровне.
Энтропия, как и энергия, - функция состояния системы. Энергия проявляется в работе. Энергия как функция состояния системы характеризуется определенными координатами, а работа равна разности энергий системы при переходе ее из одного состояния в другое.
В соответствии с законом сохранения энергии (первый закон термодинамики) все формы движения материи могут переходить одна в другую. Но существуют “ловушки”, в которых различные виды движения материи превращаются в тепловое движение - трение, электрическое сопротивление, теплопроводность. А это превращение необратимо. В конце концов вся энергия системы превращается в энергию теплового движения и рассеивается в окружающем пространстве, а энтропия системы достигает максимума.
Необратимость - неустранимое свойство реальности. Стрела времени.
Чем объясняется направленность процессов в окружающем мире? Закон, при помощи которого можно предсказать направление эволюции какой-либо физической системы, называется вторым началом термодинамики. Одна из его формулировок гласит: замкнутая система сама по себе, т.е. самопроизвольно, переходит из менее вероятного состояния в более вероятное.
Закон возрастания энтропии можно сформулировать следующим образом: во всех замкнутых системах энтропия никогда не убывает, она либо остается постоянной, либо возрастает. Соответственно этим двум возможностям все процессы, которые могут происходить с телами, делятся на обратимые и необратимые. Первые из них могут протекать как в прямом, так и в обратном направлениях, поскольку энтропия при этом не меняется; для вторых - это невозможно, поскольку связано с уменьшением энтропии.
По мнению ряда авторов, наблюдаемое в лабораторных экспериментах направление времени тесно связано с направлением времени, характерным для Вселенной в целом.
Развитие материальных систем во Вселенной происходит необратимым образом - от прошлого к будущему. Это означает, что течение времени асимметрично: оно направлено от прошлого (через настоящее) к будущему, причина всегда предшествует следствию, “стрела времени” всегда устремлена в будущее.
Не следует слишком упрощенно понимать связь стрелы времени с космологическими процессами: стрела времени не будет изменять свое направление на обратное, если Метагалактика когда-нибудь перестанет расширяться и начнет сжиматься. Если наблюдатели могли бы только по часам судить о происходящих во Вселенной процессах, то они, вероятно, даже не заметили бы, что расширение Метагалактики сменилось сжатием.
Поможем написать любую работу на аналогичную тему