Рассмотрим примеры применения уравнения Бернулли.
1. Расходомер Вентури
Для определения скорости и расхода жидкости часто используется расходомер Вентури. Измерим статическое давление p1 и p2 в поперечных сечениях с различными площадями.
Рис. 29 |
Интеграл Бернулли для сечений 1 и 2 принимает вид , .
|
Из уравнения равенства расходов для двух сечений 1 и 2 имеем
или .
Для вычисления показания дифференциального манометра запишем условие равновесия
.
Собирая все результаты, получаем
.
Формула используется для определения скорости в трубе. Hа практике для повышения точности иногда вводят эмпирический коэффициент, учитывающий гидравлические потери в трубке Вентури.
2. Измерение скорости
Для измерения кинетической энергии используется трубка полного давления, которая устанавливается в точке измерения открытым концом против потока жидкости ( рис. 30 ).
Рис. 30 |
Струйка жидкости, подтекающая к открытому концу трубки, полностью замораживается (v=0) и весь скоростной напор превращается в давление, которое в сумме со статическим достигает давления торможения в данной точке, и называется полным давлением , |
откуда
.
Таким образом измерение скорости жидкости или "несжимаемого" газа (M<a) основано на сопоставлении давления торможения с давлением в невозмущенном потоке. Последнее еще называется статистическим давлением. Приемником давления служит Г-образная трубка, или трубка Пито. Давление обычно измеряют с помощью U-образной трубки, куда залита жидкость манометрическая (спирт, вода, ртуть).
Приемное отверстие статического давления должно находится не слишком далеко от входа в трубку Пито, чтобы не случилось рассеивание механической энергии за счет вязкости, и не слишком близко, чтобы присутствие трубки Пито не искажало статическое давление.
3. Кавитация
На практике оказывается, что в жидкости давление, равное нулю, недостижимо. Если давление p2, снижаясь, достигает давления паров этой жидкости, насыщающих пространство при данной температуре p2=pt>0, то начинается процесс образования пузырьков пара (кипение), и неразрывность течения капельной жидкости нарушится.
Рис. 31
Далее смесь капельной жидкости и пузырьков пара попадает в расширяющийся канал, давление возрастает и пузырьки пара начинают конденсироваться.
Кавитацией называется совокупность процессов образования пузырьков пара и их конденсация.
Кавитация может возникать не только в трубопроводах, но и при внешнем обтекании тел в областях, где возрастают местные скорости и уменьшается давление. Кавитации подвержены быстроходные колеса насосов и турбин, гребные винты.
Конденсация пузырьков пара происходит на твердых поверхностях очень быстро и завершается гидравлическим ударом, при котором развивается местное ударное давление на твердых поверхностях, достигающее сотен и даже тысяч атмосфер. Поэтому кавитация сопровождается тряской, шумом, снижением КПД насосов и турбин, эрозией твердых поверхностей, а иногда и выходом из строя агрегатов.
Обычно работа гидравлических систем в условиях кавитации не достигаются. Для предотвращения кавитации минимальное давление жидкости в системе должно быть больше давления паров, насыщающих пространство.
Одним из способов предотвращения кавитации является снижение температуры жидкости. Это приводит к снижению давления паров, насыщающих пространство.
Например, вода при 373К кипит при давлении, а при 193К -. При кавитации многокомпонентных жидкостей (керосин, бензин и т.д.) вначале вскипают легкие фракции, а затем тяжелые. Конденсация происходит в обратном порядке.
Для оценки возможности возникновения кавитации используется безразмерный критерий - число кавитации
.
Значение, числа кавитации при котором она возникает, называется критическим .
Явление используется в кавитационных регуляторах расхода.
4. Формула Торричелли
Применим интеграл Бернулли для определения скорости истечения тяжелой несжимаемой жидкости из большого открытого сосуда через малое отверстие( рис. 32).
Рис. 32 |
Здесь S1- площадь свободной поверхности, S2 – площадь отверстия, v1 и v2 - скорости на поверхности и в отверстии. Уравнение неразрывности принимает вид . |
Считая движение жидкости установившимся и безвихревым, применим интеграл Бернулли
.
Откуда
.
Из уравнения неразрывности
,
.
Если отношение мало, то пренебрегая членом, получаем для скорости истечения приближенную формулу Торричелли.
.
Пример. Определить форму сосуда вращения, употребляемого для водяных часов( рис. 33).
Решение.
Рис. 33 |
Приведем формулы решения задачи , , , , , или , где . |
Используя уравнение Бернулли можно объяснить принцип действия :
1) работы струйного насоса, в котором высоконапорный поток G1 используется для подачи жидкости G2 из резервуара ( рис. 34).
Рис. 34
2) принцип наддува топливного самолетного бака для предотвращения кавитации в топливной системе при полетах на большой высоте ( рис. 35 )
Рис. 35
3) причину повышения подъемной силы крыла при заданной картине линий тока ( рис. 36 )
Рис. 36
Уменьшение давления в точках, где скорость потока больше, положено в основу водоструйного насоса. Струя воды подается в трубку, открывающуюся в атмосферу, так что на выходе их трубки давление равно атмосферному. В трубке имеется сужение, по которому вода идет с большой скоростью, вследствие чего давление в этом месте оказывается меньше атмосферного. Такое же давление устанавливается и в охватывающей трубку камере насоса, которая сообщается с трубкой через разрыв, имеющийся в узкой части трубки. Подсоединив к камере насоса откачиваемый объект, из него можно откачать воздух (или какой-либо другой газ) до давления порядка 100 мм рт. ст. Откачиваемый воздух захватывается струей воды и уносится в атмосферу.
Рис. 37
Поможем написать любую работу на аналогичную тему