Рассмотрим уравнения живых сил, для чего умножим уравнения у Эйлера на dx, dy, dz соответственно, и сложим их почленно:
.
Для установившегося движения в скобках слева стоит полный дифференциал давления dp. Справа будем иметь:
dx/dt = Vx; dy/dt = VY; dz/dt = Vz
Тогда VxdVx = d(Vx2/2); VydVy = d(VY2/2); VzdVz = d(Vz2/2).
Но сумма полных дифференциалов трех составляющих скорости по осям х, у, z равна полному дифференциалу скорости:
d(Vx2/2) +d(VY2/2) +d(Vz2/2) =d(V2/2) Окончательно получим закон живых сил в следующем виде:
d(V2/2) = Xdx + Ydy +Zdz -dp/p
Закон живых сил можно сформулировать в следующем виде: дифференциал кинетической энергии частицы идеальной жидкости при установившемся движении равен сумме элементарных работ сил тяжести и сил давления.
Рассмотрим наиболее важный для практики случай движения жидкости: Расположим в несжимаемой жидкости, находящейся под действием силы тяжести в установившемся движении, оси координат так, что ось z была направлена вверх параллельно направлению действия силы тяжести. Тогда X=Y=0, Z=-g (знак «минус» поставлен, т.к. ось Z направлена вверх, а ускорение g вниз) и уравнение живых сил перепишется в следующем виде:
.
Перенеся все составляющие в левую часть, получим:
.
Разделим каждый член на g и сумму дифференциалов заменим дифференциалом суммы:
.
После интегрирования получим уравнение Бернулли для элементарной струйки жидкости в установившемся движении:
.
Дифференциал равен нулю, если под знаком дифференциала стоит постоянная величина.
Все три члена уравнения Бернулли представляют собой механическую энергию, поэтому можно сделать следующее заключение: вдоль линии тока несжимаемой и невязкой жидкости запас механической энергии, отнесенный к единице массы, веса или объема остается постоянным.
Механическую энергию жидкости, отнесенную к единице веса, называют полным напором; суммы энергии сил давления и положения, отнесенную к единице веса - статическим напором. Вдоль данной линии тока (в установившемся движении жидкости) сумма скоростного и статического напоров остается постоянной.
Если вспомним, что P/pg пьезометрический напор, a z геометрический, а также введя понятие скоростного (динамического) напора V2/2g , то можно сказать, что сумма скоростного, пьезометрического и геометрического напоров вдоль линии тока есть величина постоянная.
Так как сумма z+P/pg представляет собой удельную потенциальную энергию жидкости, a V2/2g- удельную кинетическую энергию, то уравнение Бернулли устанавливает постоянство полной энергии (суммы кинетической и потенциальной энергии) и является частным случае/закона сохранения энергии.
Получим теперь уравнение Бернулли для потока идеальной жидкости, для чего подсчитаем полную энергию жидкости в живом сечении, умножив все составляющие на весовой расход элементарной струйки и проинтегрировав по площади живого сечения :
.
Т.к. давление распределяется по закону гидростатики, то z+P/pg =const и может быть вынесено за знак интеграла. Кроме того, скорости всех элементарных трубок одинаковы, поэтому также выносится за знак интеграла. Тогда получим:
.
Возвратясь теперь к размерности удельной энергии, получим уравнение Бернулли для потока идеальной жидкости:
.
Уравнение не учитывает потерь напора и неравномерности распределения скоростей по сечению потока, возникающих при движении • реальной жидкости.
Рассмотрим построение пьезометрической и напорной линии для случая движения идеальной жидкости (рис. 28).
Поможем написать любую работу на аналогичную тему