Изучение физической химии часто начинают сзаконов поведения газов. Связано это с тем, что законы поведения газов представляют собой основу для понимания поведения более сложных систем, поскольку в той или иной мере, с определенными допущениями, все системы могут быть мысленно или экспериментально упрощены. Такое упрощение часто называют моделированием определенных свойств сложной системы. Поведение газов относительно просто по двум причинам:
1. Смеси газов всегда образуют однородные по составу, истинные растворы, находящиеся в одной «фазе».
2. При одной и той же температуре и одном и том же давлении одинаковые объемы газов содержат одинаковое количество молекул (это известный закон Авогадро).
Системы газов характеризуются общими параметрами – такими, как масса, объем, температура, давление, плотность и др. Некоторые параметры связаны между собой. Это означает, что если мы, например, знаем массу и объем газа, то нам не представляет труда вычислить его плотность, так как
плотность = масса/объем.
Напомним, что, рассматривая свойства газов, мы пренебрегаем влиянием внешних полей. Экспериментаторы стремятся обойтись минимальным числом параметров (свойств), так как их непосредственное измерение резко увеличивает трудозатраты на эксперимент.
По-видимому, не следует объяснять, что подразумевается под такими свойствами, как масса, объем, плотность, давление. Наиболее трудно воспринимается понятие температуры. То, что мы обычно понимаем под температурой, есть не что иное, как мера средней кинетической энергии молекул некоего тела. Если рассматривать перенос тепла от одного тела к другому, то это представляет собой просто передачу кинетической энергии молекул одного тела другому. Однако такие понятия температуры и тепла были приняты далеко не сразу. Вы помните, что ранее тепло рассматривалось как некая невидимая «калорическая» жидкость – теплород, которая перетекает от одного тела к другому. Забегая вперед, укажем, что состояние газа обусловлено любыми двумя из трех его свойств: P, V, T. Иначе говоря, из трех переменных независимыми являются только две. Математически мы можем записать это в форме
T = f (P,V) (эмпирическая температура). (1.1)
Определение температуры, которое следует из выражения 1.1, часто называют нулевым законом термодинамики. Нулевой закон термодинамики часто выражают через понятие температуры и теплового равновесия: две системы, находящиеся в тепловом равновесии с третьей, находятся в тепловом равновесии друг с другом.
Допустим, что два тела, нагретые до разных температур, приводятся в контакт друг с другом до наступления равновесия.
Это значит, что
f(P1,V1) = f(P2,V2) или T1 = T2. (1.2)
На практике это означает, что одно тело может быть использовано для определения температуры другого тела. Это легко видеть из уравнения. Допустим, у нас сохраняется одинаковым давление для двух тел, т.е. Р1 = Р2, тогда после установления равновесия по изменению объема можно судить о температуре анализируемого образца. На этом принципе работают известные нам термометры. Для этого берется любое тело или жидкость, которые линейно расширяются с температурой, их калибруют, выбирая удобную шкалу. В повседневной практике обычно используют стоградусную шкалу Цельсия, в которой за ноль принимается температура плавления льда, а за 100 °С – температура кипения воды. Все это при атмосферном давлении.
Поможем написать любую работу на аналогичную тему