Дифракция Френеля на круглом отверстии и диске - Оптика. Элементы квантовой механики. Лекции.

Нужна помощь в написании работы?

1. Дифракция Френеля на круглом отверстии

Сферическая волна, распространяющаяся из точечного источника монохроматического света S, встречает на своем пути экран с круглым отверстием, диаметр которого d=BC.  Пусть Ф – фронт волны, который является частью поверхности сферы. Разобьем поверхность фронта на зоны Френеля (см. рис.2) так, что волны от соседних зон приходят в точку наблюдения М в противофазе. Тогда амплитуда результирующей волны в точке М         

                                             А=А1-А2+А3-А4+…Аm ,                                               (1)

где  Аi – амплитуда волны, пришедшей от i-ой зоны Френеля. Перед Аm берется знак плюс, если m – нечетное, и минус, если m – четное.

         Величина Аi зависит от площади si i-той  зоны и угла ai между внешней нормалью к поверхности зоны в какой-либо точке и прямой, направленной из этой точки в точку М (см. рис. 2, где, в частности, показан угол a3).

         Можно показать, что все зоны Френеля примерно равновелики по площади. Увеличение же угла ai с ростом номера зоны приводит к уменьшению амплитуды Аi. Она уменьшается с ростом i также и вследствие увеличения расстояния   от зоны до точки М. Таким образом, А1>А2>…> Am. При большом числе зон можно приближенно считать, что                     Аi=(Ai-1+Ai+1)/2.                      (2)

            Перепишем теперь (1) в виде

                           (3)

так как, согласно (2), все выражения, стоящие в скобках, равны нулю.

         Можно показать, что общее число m зон Френеля, обращенное к точке М,

                  ,                                          (4)

где d=BC – диаметр отверстия, R=SO, L=OM (см. рис. 2), l – длина волны.

         Если d = 1 см, R = L= 10 см и l = 500 нм, то m = 1000. В этом случае Аm<<A1 и слагаемым Аm/2 в (3) можно пренебречь. Тогда, согласно (3),

                                                                            А=А1/2.                                                     (5)

         Таким образом, амплитуда  результирующей волны в точке М определяется как бы действием только половины центральной зоны Френеля. Ее диаметр d, как следует из (4) при m=1, R=L=10 см и l=500 нм, равен 0,32 мм.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

         Следовательно, распространение света от S к М происходит так, будто пучок света распространяется внутри очень узкого канала вдоль SM, т.е. прямолинейно.

         В этом случае круговое пятно диаметром ED (см. рис. 2) равномерно освещено, и вне его наблюдается тень. Следовательно, дифракционная картина отсутствует, когда диаметр отверстия BC = d>>l.

При уменьшении диаметра отверстия до величины d1мм число зон согласно (4) уменьшается и Аm становится сравнимым с А1, и поэтому пренебречь слагаемым Аm/2  в (3) нельзя.

         При нечетном числе зон, согласно (3),

        А=А1/2 +Аm/2                                            (6)

и в точке М наблюдается максимум (светлое пятно).

         При четном числе зон

        А=А1/2 -Аm/2                                                       (7)

и в точке М будет наблюдаться минимум (темное пятно). Этот факт особенно наглядно противоречит закону прямолинейного распространения света.

         Очевидно, что максимум и минимум будут тем сильнее отличаться друг от друга, чем ближе значение Аm к А1, т.е. когда число зон m мало (m  10). Расчет амплитуды в других точках экрана более сложен. Можно показать, что дифракционная картина вблизи точки М имеет вид чередующихся темных и светлых колец с центрами  в точке М. По мере удаления от точки М интенсивность максимумов света убывает.

         Если на пути световой волны  в плоскости отверстия поставить зонную пластинку, которая перекрывала бы все четные зоны, то А=А1+А3+А5+… и интенсивность I=A2 в точке М резко возрастает. Еще большего эффекта можно достичь, не перекрывая четные зоны, а изменяя фазу их колебаний на p, тогда А=А1+А2+А3+…         Такая пластинка называется фазовой зонной пластинкой, и использование ее позволяет получить дополнительное увеличение интенсивности в 4 раза.        

         Опыт подтверждает эти выводы: зонная пластинка увеличивает интенсивность в точке М, действуя подобно собирающей линзе.

2. Дифракция Френеля на небольшом диске (круглом непрозрачном экране)

         Способ построения зон Френеля на открытой части волнового фронта Ф падающей монохроматической волны показан на рис. 3. Пусть диск закрывает несколько зон, действие которых не будем учитывать. Нумерацию зон начнем от первой открытой зоны, расстояние до краев которой от точки М равны L и L+l/2. Последнюю открытую зону обозначим через m.

Проведя анализ, подобный предыдущему (см. 4.3.1), и полагая, что m достаточно велико, получим для амплитуды результирующей волны, выражение идентичное (5), т.е. А=А1/2. Дифракционная картина на экране Э имеет вид концентрических темных и светлых колец с центром в точке М, где всегда находится максимум (пятно Пуассона).

Поделись с друзьями