Классическая электронная теория электропроводности металлов - Шпаргалки к экзамену по оптике

Нужна помощь в написании работы?

Опыты, проведенные  Рикке в 1901 г., Мандельштамом и Папалекси в 1913 г., Толменом и Стюартом в 1916 г. показали, что носителями тока в металлах являются электроны. Ток в металлах можно вызвать крайне малой разностью потенциалов. Это даёт основание считать, что электроны перемещаются по металлу практически свободно. Появление этих свободных электронов объясняется тем, что при образовании кристаллической решётки от атомов металлов легко отрываются слабее всего связанные валентные электроны. Можно показать, что концентрация их достигает электронов в . При такой высокой концентрации электронов средняя сила, действующая на электрон со стороны всех остальных электронов и ионов, равна нулю и, следовательно,  электроны можно считать свободными частицами и их взаимодействие с ионами можно рассматривать как ряд последовательных соударений.

В этом приближении система электронов может анализироваться как система одноатомных молекул идеального газа. Исходя из этого, Друде и позднее Лоренц распространили результаты кинетической теории газов (см лекции 1,2) на свободные электроны - на так называемый электронный газ и получили законы Ома, Джоуля-Ленца в дифференциальной форме.

В позапрошлом семестре изучались эти законы .

Плотность тока проводимости равна произведению удельной электрической проводимости проводника на напряжённость электрического поля в проводнике, т.е.

 - закон Ома в дифференциальной форме.                             (1)

 Удельная тепловая мощность тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряжённости электрического поля в проводнике, т. е.

- закон Джоуля-Ленца в дифференциальной форме,    (2)

где в (1) и (2) g - удельная электропроводность (g = 1/r).

         Друде и Лоренц показали, что для металлических проводников

          ,                                                                             (3)

где n - концентрация свободных электронов, e и m - заряд и масса электрона, álñ -средняя длина свободного пробега электрона, ávñ - средняя скорость теплового движения электрона. Согласно формуле (30) в лекции 1,2   ávñ  и при Т = 300 К, (масса электрона ), .

Скорость же направленного движения (скорость дрейфа электрона), возникающего благодаря электрическому полю . Для , (заряд электрона ), vдр = = 0,78 мм/с, т. е. много меньше скорости теплового движения электрона.

Итак, классическая теория объяснила законы Ома, Джоуля-Ленца, Видемана-Франца. Вместе с тем она имеет ряд недостатков.

Строгий анализ с использованием квантовой теории показал, что не все валентные электроны свободно движутся по решётке с тепловыми скоростями, а лишь малая их часть. Подавляющее число валентных электронов в электропроводимости (как и в теплоёмкости) не участвуют. Это приводит к расхождениям между классической теорией и практикой. Например, из (3) следует, что ~ ~ , а на практике в большом диапазоне изменения температур  g ~ 1/Т.  

Эти и другие расхождения объясняет квантовая теория.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Поделись с друзьями