Построение и исследование модели множественной линейной регрессии является достаточно трудоёмкой процедурой. Трудоёмкость вычислений можно существенно снизить с помощью применения в MS Excel обработки Сервис/Анализ данных/РЕГРЕССИЯ.
Рассмотрим возможности использования обработки РЕГРЕССИЯ на данных примера из п.3.2. Данные для факторной переменной x3 мы использовать не будем, поскольку x3 была удалена из рассмотрения в результате проверки факторных переменных на мультиколлениарность. После вызова обработки РЕГРЕССИЯ зададим в соответствующих окнах диапазон ячеек, в которых находятся данные для Y вместе с заголовком столбца, диапазон ячеек, в которых находятся данные для факторных переменных x1, x2 также с заголовками столбцов, поставим флажок Метки (указывает, что в первой строке диапазонов стоят названия столбцов), зададим начальную ячейку для выходного интервала, поставим флажок Остатки. После выполнения обработки в ячейках, расположенных ниже и правее ячейки, указанной нами как начальная ячейка выходного интервала будут расположены результаты. Результаты обработки группируются в 4 таблицы. Если при вызове обработки мы дополнительно поставим флажок График остатков, то будут выданы графики остатков, по горизонтальной оси которых будут отложены значения одной из факторных переменных, а по вертикальной – значения ряда остатков εi. Число графиков будет совпадать с числом факторных переменных. Рассмотрим полученные результаты.
Ошибка! Ошибка связи.
Во-первых, в колонке Коэффициенты третьей таблицы возьмём значения параметров множественной модели линейной регрессии. Уравнение модели имеет вид:
.
В колонке t–статистика этой же таблицы находятся t-статистики для коэффициентов уравнения регрессии. Если возьмём при α=0,1 критическое значение tкр(0,1; 7-2-1)=2,13, то получим, что модули первых двух параметров превышают критической значение, а модуль третьего параметра нет. Таким образом значения а0=-14,04 и а1=1,36 следует признать значимыми, а значение а2=0,2 – незначимым. Следует отметить, что для определения значимости коэффициентов не обязательно определять критическое значение t-статистики. Достаточно сравнить соответствующие значение колонки P-Значение с выбранным уровнем значимости α и, если оно меньше чем α, то соответствующий параметр можно признать значимым. У нас получилось 0,089 < 0,1 и 0,014 < 0,1, то есть первые два параметра можно признать значимыми с вероятностью 90%, а 0,566 > 0,1, то есть третий параметр значимым не является, то есть наценку можно исключить из рассмотрения в рамках данной модели.
В первой таблице приведено значение коэффициента детерминации R-квадрат = 0,9102. Следовательно, можно сделать вывод, что в рамках линейной модели множественной регрессии изменение объёма продаж на 91% объясняется изменением температуры воздуха и торговой наценки.
В колонке F третьей таблицы приведено значение F-статистики Фишера равное 20,268. Для оценки значимости уравнения регрессии в целом сравним его с критическим значением Fкр(0,1; 2; 7-2-1) = 4,32. Поскольку F-статистика больше критического значения можно сделать вывод о значимости уравнения в целом. Этот же вывод можно сделать без определения критического значения Fкр путём сравнения значения из следующей колонки третьей таблицы Значимость F, равное 0,008, с выбранным уровнем значимости α = 0,1 (для возможности сделать вывод о значимости уравнения в целом это значение не должно превышать выбранный уровень значимости).
Для определения средней ошибки аппроксимации можно воспользоваться имеющимся в четвёртой таблице рядом остатков εi (колонка Остатки). Однако, потребуются дополнительные вычисления. Указанную таблицу следует дополнить колонкой , где Yi – ряд наблюдений переменной Y (в учебных задачах задан в условии) и вычислить среднее значение для этой колонке. В результате получим:
Ошибка! Ошибка связи.
Модуль вычисляется с помощью функции ABS. Мы получили E отн.ср. = 63,73%, что значительно превышает 15%, следовательно, точность модели неудовлетворительная, и её не рекомендуется использовать для прогнозирования.
Заметим, что в первой таблице итоговых результатов имеется значение стандартной ошибки оценки, которое необходимо при построении интервального прогноза, а в последней четвёртой таблице имеется ряд расчётных значений исследуемого признака Ypi (колонка Предсказанное Y).
Поможем написать любую работу на аналогичную тему
Реферат
Применение обработки РЕГРЕССИЯ для определения параметров модели множественной линейной регрессии и её исследования
От 250 руб
Контрольная работа
Применение обработки РЕГРЕССИЯ для определения параметров модели множественной линейной регрессии и её исследования
От 250 руб
Курсовая работа
Применение обработки РЕГРЕССИЯ для определения параметров модели множественной линейной регрессии и её исследования
От 700 руб