Числовые характеристики случайных величин
1 . Математическое ожидание (среднее значение)
Определение:
Математическим ожиданием называется
- для дискретной случайной величины: (6.4)
Сумма берется по всем значениям, которые принимает случайная величина. Ряд должен быть абсолютно сходящимся (в противном случае говорят, что случайная величина не имеет математического ожидания)
- для непрерывной случайной величины:; (6.5)
Интеграл должен быть абсолютно сходящимся (в противном случае говорят, что случайная величина не имеет математического ожидания)
Свойства математического ожидания:
a . Если С - постоянная величина, то МС = С
b . МСх = СМх
c . Математическое ожидание суммы случайных величин всегда равно сумме их математических ожиданий: М(х+y) = Мх + Мy
d . Вводится понятие условного математического ожидания. Если случайная величина принимает свои значения хi с различными вероятностями p(xi/Hj) при разных условиях Hj, то условное математическое ожидание определяется
как или ; (6.6)
Если известны вероятности событий Hj, может быть найдено полное
математическое ожидание: ; (6.7)
Пример 4: Сколько раз в среднем надо бросать монету до первого выпадения герба ? Эту задачу можно решать "в лоб"
xi |
1 2 3 ... k.. |
|
p(xi) : |
Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.
|
, |
но эту сумму еще надо вычислить. Можно поступить проще, используя понятия условного и полного математического ожидания. Рассмотрим гипотезы Н1 - герб выпал в первый же раз, Н2 - в первый раз он не выпал. Очевидно, р(Н1) = р(Н2) = ½; Мx / Н1 = 1;
Мx / Н2 на 1 больше искомого полного матожидания, т.к. после первого бросания монеты ситуация не изменилась, но один раз она уже брошена. Используя формулу полного математического ожидания, имеем
Мх = Мx / Н1×р(Н1) + Мx / Н2×р(Н2) = 1×0.5 + (Мх + 1)×0.5 , разрешая уравнение относительно Мх, получаем сразу Мх = 2 .
e . Если f(x) - есть функция случайной величины х, то определено понятие математического ожидания функции случайной величины:
- для дискретной случайной величины: ; (6.8)
Сумма берется по всем значениям, которые принимает случайная величина. Ряд должен быть абсолютно сходящимся.
-для непрерывной случайной величины:; (6.9)
Интеграл должен быть абсолютно сходящимся.
2 . Дисперсия случайной величины
Определение:
Дисперсией случайной величины х называется математическое ожидание квадрата отклонения значения величины от ее математического ожидания: Dx = M(x-Mx)2
- для дискретной случайной величины: ; (6.10)
Сумма берется по всем значениям, которые принимает случайная величина. Ряд должен быть сходящимся (в противном случае говорят, что случайная величина не имеет дисперсии)
- для непрерывной случайной величины: ; (6.11)
Интеграл должен быть сходящимся (в противном случае говорят, что случайная величина не имеет дисперсии)
Свойства дисперсии:
a . Если С - постоянная величина, то DС = 0
b . DСх = С2Dх
c . Дисперсия суммы случайных величин всегда равно сумме их дисперсий только, если эти величины независимы (определение независимых величин)
d . Для вычисления дисперсии удобно использовать формулу:
Dx = Mx2 - (Mx)2 (6.12)
Поможем написать любую работу на аналогичную тему