Нужна помощь в написании работы?

Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов.

Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов.

Применение традиционных методов корреляционно-регрессионного анализа для изучения причинно следственных зависимостей переменных, представленных в форме временных рядов, может привести к ряду серьезных проблем, возникающих как на этапе построения, так и на этапе анализа эконометрических моделей. В первую очередь эти проблемы связаны со спецификой временных рядов как источника данных в эконометрическом моделировании.

Предполагается, что в общем случае каждый уровень временного ряда содержит три основные компоненты: тенденцию (Т), циклические или сезонные колебания (S) и случайную компоненту (E).

Если временные ряды содержат сезонные или циклические колебания, то перед проведением дальнейшего исследования взаимосвязи необходимо устранить сезонную или циклическую компоненту из уровней каждого ряда, поскольку ее наличие приведет к завышению истинных показателей силы и связи изучаемых временных рядов в случае, если оба ряда содержат циклические колебания одинаковой периодичности, либо к занижению этих показателей в случае, если сезонные или циклические колебания содержит только один из рядов или периодичность колебаний в рассматриваемых временных рядах различна.

Устранение сезонной компоненты из уровней временных рядов можно проводить в соответствии с методикой построения аддитивной и мультипликативной моделей. Если рассматриваемые временные ряды имеют тенденцию, коэффициент корреляции по абсолютной величине будет высоким, что в данном случае есть результат того, что х и у зависят от времени, или содержат тенденцию. Для того чтобы получить коэффициенты корреляции, характеризующие причинно следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряде.

Влияние фактора времени будет выражено в корреляционной зависимости между значениями остатков et за текущий и предыдущие моменты времени, которая получила название «автокорреляция в остатках».

Автокорреляция в остатках есть нарушение одной из основных предпосылок МНК – предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении к оценке параметров модели обобщенного МНК. При построении уравнения множественной регрессии по временным рядам данных, помимо двух вышеназванных проблем, возникает также проблема мультиколлинеарности факторов, входящих в уравнение регрессии, в случае если эти факторы содержат тенденцию.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Модели рядов:   1)Модели стационарных временных рядов

  • Модель авторегрессии 1-го порядка - AR(1) (марковский процесс). Эта модель представляет собой простейший вариант авторегрессионного процесса типа (4.8), когда все коэффициенты  кроме первого равны нулю. 
  • Модели авторегрессии 2-го порядка – AR(2) (процессы Юла). Эта модель, как и AR(1), представляет собой частный случай авторегрессионного процесса, когда все коэффициенты pj в правой части (4.8) кроме первых двух, равны нулю
  • Модели авторегрессии p-го порядка – AR(p) (p ³ 3). Эти модели, образуя подмножество в классе общих линейных моделей, сами составляют достаточно широкий класс моделей. 
  • Модели скользящего среднего порядка q (МА(q)-модели).

2)Модели нестационарных временных рядов(К нестационарным относят временные ряды, содержащие одну, две или все три первых составляющих в соотношении)

3)Модели рядов, содержащих сезонную компоненту. Под временными рядами, содержащими сезонную компоненту, понимаются процессы, при формировании значений которых обязательно присутствовали сезонные и/или циклические факторы.

Поделись с друзьями
Добавить в избранное (необходима авторизация)