Нужна помощь в написании работы?

Если факторные признаки различны по своей сущности и/или имеют различные единицы измерения, то коэффициенты регрессии Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними. при разных факторах являются несопоставимыми. Поэтому уравнение регрессии дополняют соизмеримыми показателями тесноты связи фактора с результатом, позволяющими ранжировать факторы. К ним относят: частные коэффициенты эластичности, β-коэффициенты, частные коэффициенты корреляции.

Парные коэффициенты корреляции. Для измерения тесноты связи между двумя из рассматриваемых переменных (без учета их взаимодействия с другими переменными) применяются парные коэффициенты корреляции. Методика расчета таких коэффициентов и их интерпретации аналогичны линейному коэффициенту корреляции в случае однофакторной связи.

Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.

где Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними. - среднее квадратическое отклонение факторного признака;

     Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними. - среднее квадратическое отклонение результативного признака.

Коэффициент частной корреляции измеряет тесноту линейной связи между отдельным фактором и результатом при устранении воздействия прочих факторов модели.

Для качественной оценки тесноты связи можно использовать следующую классификацию:

0.1- 0.3- слабая связь

0.3-0.5 – умеренная связь

0.5-0.7- заметная связь

0.7-0.9- тесная связь

0.9-0.99- весьма тесная

Для расчета частных коэффициентов корреляции могут быть использованы парные коэффициенты корреляции.

Для случая зависимости Y от двух факторов можно вычислить 2 коэффициента частной корреляции:

Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.   

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

(2-ой фактор Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними. фиксирован);

Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.    

(1-ый фактор Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними. фиксирован).

Это коэффициенты частной корреляции 1-ого порядка (порядок определяется числом факторов, влияние которых на результат устраняется).

Частные коэффициенты корреляции, рассчитанные по таким формулам изменяются от -1 до +1. Они используются не только для ранжирования факторов модели по степени влияния на результат, но и также для отсева факторов. При малых значениях Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними. нет смысла вводить в уравнение m-ый фактор, т.к. качество уравнения регрессии при его введении возрастет незначительно (т.е. теоретический коэффициент детерминации увеличится незначительно).

Совокупный коэффициент множественной корреляции или индекс множественной корреляции определяет тесноту совместного влияния факторов на результат:

Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.

где  Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.остаточная дисперсия;

или Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.

Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.. Он принимает значения от 0 до 1 (в отличие от парного коэффициента корреляции, который может принимать отрицательные значения, R используется без учета направления связи). Чем плотнее фактические значения Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними. располагаются относительно линии регрессии, тем меньше остаточная дисперсия и, следовательно, больше величина Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.. Таким образом, при значении R близком к 1, уравнение регрессии лучше описывает фактические данные и факторы сильнее влияют на результат; при значении R близком к 0 уравнение регрессии плохо описывает фактические данные и факторы оказывают слабое воздействие на результат.

При трех переменных для двух факторного уравнения регрессии данная формула совокупного коэффициента множественной корреляции легко приводится к следующему виду:

Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.

Чем R ближе к единице, тем совокупное влияние изучаемых показателей x1 и x2  на результативный фактор y больше (корреляционная связь более интенсивная).

 

Множественный (совокупный) коэффициент детерминации определим как квадрат множественного коэффициента корреляции. Показывает, какая доля вариации изучаемого показателя объясняется влиянием факторов, включенных в уравнение множественной регрессии. Его значение - в пределах от нуля до единицы. Чем ближе множественный коэффициент детерминации к единице, тем вариация изучаемого показателя в большей мере характеризуется влиянием отобранных факторов. Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.

Связь: Частный коэффициент корреляции в отличие от коэффициента (полного) парной корреляции между явлениями показывает тесноту связи после устранения изменений, обусловленных влиянием третьего явления на оба коррелируемых признака (из значений корреляционных признаков вычитаются линейные оценки в связи с третьим признаком).

Также из приведенных ранее формул частных коэффициентов корреляции видна связь этих показателей с совокупным коэффициентом корреляции. Зная частные коэффициенты корреляции (последовательно первого, второго и более высокого порядка), можно определить  совокупный коэффициент корреляции по формуле:

Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.

При полной зависимости результативного признака от исследуемых факторов коэффициент совокупного их влияния равен единице. Из единицы вычитается доля остаточной дисперсии результативного признака Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними., обусловленная последовательно включенными в анализ факторами. В результате подкоренное выражение характеризует совокупное действие всех исследуемых факторов.

Поделись с друзьями
Добавить в избранное (необходима авторизация)