На практике решаются задачи, в которых результат опыта описывается не одной с.в., а двумя или более с.в., образующими систему. При этом свойства системы нескольких с.в. могут включать и взаимные связи (зависимости) между ними.
Если с.в. X и Y принимают дискретные значения xi, yj и каждой паре значений (xi, yj) соответствует определенная вероятность pij, то можно составить таблицу распределения вероятностей дискретной двумерной с.в.
Очевидно .
Значение функции Р(x,y) равно вероятности обнаружить с.в. Х<х и с.в. Y<y, т.е.
P(x,y)=Prob(X<x,Y<y).
Свойства функции распределения Р(x,y):
1) Р(х,y) - неубывающая функция своих аргументов,
т.е. при х2>x1 P(x2,y)>P(x1,y) или при y2>y1 P(x,y2)>P(x,y1);
2) P(x,-¥)=P(-¥,y)=P(-¥,-¥)=0;
3) P(x,+¥)=P(x), P(+¥,y)=P(y) - если один из аргументов равен +¥, то функция распределения Р(х,y) превращается в функцию распределения другой с.в.;
4) P(+¥,+¥)=1.
Плотность распределения системы двух с.в. (вторая смешанная производная P(x,y) по и затем по ).
(25.3)º(15.3)
или в общем виде
, .
Геометрически p(x,y) можно представить поверхностью (поверхность распределения - по ОХ и OY откладываются значения с.в. X и Y, по Z - вероятность их появления, см. рис. ).
Из (25) следует
(26.3)º(17.3).
Вероятность обнаружить двумерную с.в. (X,Y) в области D:
Prob((X,Y)ÌD)= (27.3)=(16.3).
Вероятность обнаружить точку М с координатами х1, х2,...хn в n-мерном объеме V:
Prob(MÌV)= (27¢.3)
Далее, аналогично (18)
(28.3),
т.е. геометрически объем под поверхностью распределения равен 1.
В общем виде имеем n-кратный интеграл
(28¢.3).
Если известен закон распределения системы двух случайных величин p(x,y), то можно определить законы распределения отдельных величин, входящих в систему:
(29.3).
То же, в общем виде:
(29¢.3).
Но для того, чтобы по заданным законам распределения отдельных с.в., входящих в систему, определить законы распределения системы с.в., надо знать зависимость между величинами, входящими в систему.Условный закон распределения с.в. Х, входящей в систему (X,Y) - закон ее распределения, вычисленный при условии, что другая с.в. Y приняла определенное значение. Условный закон распределения можно задавать функцией P(x/y) и плотностью p(x/y) распределения.
Геометрически функция плотности распределения p(x/y) представляет собой сечение поверхности распределения при y=const. Сечения поверхности распределения плоскостями x=const и y=const дают соответственно условные плотности распределения p(y/x) величины Y при определенных значениях x и условные плотности распределения p(x/y) величины X при определенных значениях y. Если X и Y - зависимые с.в., то кривые плотности распределения p(y/x) изменяются при изменении x, а кривые плотности распределения p(x/y) изменяются при изменении y. М.о. этих кривых при таких изменениях образуют линии регрессии 1 и 2. В случае независимости X и Y линии регрессии представляют собой прямые и , параллельные осям координат. При наличии функциональной связи (а не стохастической) между X и Y обе линии регрессии сливаются в одну - y=y(x), при этом поверхность плотности распределения может быть заменена кривой плотности распределения X или Y вдоль линии y=y(x).
С учетом вышесказанного плотность распределения системы двух с.в. равна плотности распределения одной из них, умноженной на условную плотность распределения другой величины, вычисленную при условии, что первая величина приняла заданное значение:p(x,y)=p(x)p(y/x) (30.3)=(7.2)
или в общем случае
p(x1,x2,...,xn)=p(x1,x2,...,xi/xi+1,xi+2,...,xn)p(xi+1,xi+2,...,xn) (30¢.3).
Для независимых с.в. p(x,y)=p(x)p(y) (31)=(3) - плотность распределения системы независимых с.в. равна произведению плотностей распределения отдельных величин, входящих в систему.
Поможем написать любую работу на аналогичную тему