Нужна помощь в написании работы?

Живым системам присущи различные физико-химические механизмы транспорта растворителя и растворенных веществ. Различают активный и пассивный транспорт. Активный транспорт характерен для живых мембран. Мы пока остановимся на пассивном транспорте, который более изучен и лучше может быть описан математически. Так, в 1748 году А. Ноллет впервые наблюдал, как растворитель проходит через мембрану из разбавленного раствора в более концентрированный. Если к более концентрированному раствору приложить давление, то в зависимости от его величины течение растворителя может быть замедлено, остановлено или обращено.

Осмотическим давлением раствора называется то наименьшее давление, которое, помимо давления самого растворителя, необходимо приложить к раствору, чтобы предотвратить перетекание растворителя к раствору через мембрану, разделяющую раствор и растворитель, причем мембрана непроницаема для молекул растворенного вещества (полупроницаема) в направлении от чистого растворителя к раствору. Растворитель может перетекать из более разбавленного раствора в более концентрированный даже в том случае, если единственной разделяющей поверхностью между двумя растворами будет слой пара.

По-видимому, осмотические эффекты не должны зависеть от природы мембран, используемых для их измерения. В противном случае можно бы было построить вечный двигатель, используя этот эффект.

В 1877 году В. Пфеффер измерил осмотическое давление П нескольких растворов, приготовленных из одного и того же количества вещества в разных объемах растворителя. При этом он показал, что при постоянной температуре произведение П V всегда одно и то же. Он обнаружил также, что для данного раствора с повышением температуры осмотическое давление растет, однако отношение П/Т сохраняется постоянным. Датский химик Я.Вант-Гофф обобщил результаты и предложил эмпирическое уравнение для описания осмотического давления растворов. Это уравнение имеет вид:

П = CRT,                                                                                                                                 (6.17)

где П – осмотическое давление, С – молярная или моляльная концентрация раствора, а Т – температура. Линейная зависимость П от С и Т соблюдается только для идеальных растворов. Таким образом, уравнение Вант-Гоффа служит еще одним примером предельного закона.

Однако уравнение осмотического давления можно однозначно вывести, исходя из теоретических соображений. Осмотическое давление раствора можно интерпретировать как следствие того факта, что давление пара раствора нелетучего вещества ниже, чем давление пара чистого растворителя.

Уравнение осмотического давления легко получить, если предположить, что пар растворителя ведет себя как идеальный газ. Когда раствор отделен от чистого растворителя полупроницаемой мембраной и система путем увеличения общего давления на раствор приведена к равновесию, свободная энергия на моль растворителя должна быть одинакова по обе стороны от мембраны. Уменьшение свободной энергии на моль растворителя в растворе (по сравнению с его свободной энергией в стандартном состоянии) выражается уравнением (6.14):

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

.                                                                                                         (6.18)

Увеличение давления, которое приложено к раствору, должно быть достаточным для того, чтобы восстановить свободную энергию растворителя в растворе до свободной энергии чистого растворителя. Это увеличение свободной энергии зададим уравнением

dG = VdP при Т = const,                                                                                                      (6.19)

так как жидкость несжимаема:

DG = VDР .                                                                                                                              (6.20)

Увеличение давления и есть по существу осмотическое давление, т.е. DР = П.

Молярный объем растворителя обозначается символом V. Следовательно, для жидкости .

При равновесии П

,                                                                                       (6.21)

откуда

.                                                                                 (6.22)

Для разбавленных растворов .

Подставим в уравнение (6.22) и получим:

.                                                                                                                        (6.23)

Поскольку для разбавленных растворов х2 » n2/n1, то ;

 – равен объему растворителя и приблизительно объему раствора (для разбавленных растворов). В результате получим:

.                                                                                                                       (6.24)

Уравнение (6.24) является специальным случаем уравнения идеального газа применительно к осмотическому давлению. Его можно использовать не только для разбавленных растворов, однако требуется, чтобы пар растворителя вел себя как идеальный газ.

Однако нельзя дать ввести себя в заблуждение видом уравнения и его сходством с уравнением идеального газа, поскольку нет оснований полагать, что осмотическое давление возникает за счет бомбардировки стенок сосуда молекулами растворенного вещества. Из уравнения лишь следует, что растворение одного моля вещества в одном литре растворителя при 0 ºС в идеальном случае будет вызывать повышение осмотического давления на 22,41 атм. Реальные растворы в таких концентрациях дают заметные отклонения от предсказанных осмотических давлений, подобно тому как это имеет место при вычислении точек замерзания и точек кипения.

Уравнение (6.24) можно преобразовать в форму, содержащую молекулярную массу растворенного вещества М. Подставим вместо числа молей растворенного вещества n2 величину g/M,  получим:

 или ,                                                                                  (6.25)

где С – концентрация в граммах на л. При делении обеих частей на С слева появляется член П/С, который называется приведенным осмотическим давлением. В идеальных растворах П/С должна оставаться постоянной, т.е. не зависеть от концентрации. Однако это не всегда соблюдается. Общее уравнение для таких случаев имеет вид:

,                                                                             (6.26)

где А1 = 1/МN, а МN – среднестатистический молекулярный вес. Для сильно разбавленных растворов при экспериментально измеряемых концентрациях малыми членами можно пренебречь, и уравнение будет иметь вид:

.                                                                                                     (6.27)

Такое уравнение правомерно при следующих условиях:

1) величина А2 не очень велика;

2) величина МN не очень велика.

Уравнение (6.27) является уравнением прямой линии с наклоном, численно равным величине А2, называемой «вторым вириальным коэффициентом». Прямая пересекает ось П/CRT в точке, соответствующей величине, обратной MN. Поэтому метод осмотического давления используется для определения молекулярных весов полимеров. Наиболее точные результаты получаются для полимеров с молекулярными весами, лежащими между 10 000 и 20 0000.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями