Нужна помощь в написании работы?

 Задачи регрессионного анализа сводятся к:

1. Выбору типа модели (формы связи), установление степени влияния независимых переменных на зависимую и определение расчетных значений зависимой переменной (функции регрессии).

2. Измерению тесноты известной связи между варьирующими признаками, определению неизвестных причинных связей (причинный характер которых, должен быть выяснен с помощью теоретического анализа) и оценке факторов, оказывающих наибольшее влияние на результативный признак.

Решение всех названных задач приводит к необходимости комплексного использования этих методов.

По количеству включаемых факторов модели могут быть однофакторными и многофакторными (два и более факторов).

Корреляционно-регрессионные связи (зависимости) существуют там, где взаимосвязанные явления характеризуются только случайными величинами. При таких связях среднее значение (математическое ожидание) случайной величины результативного признака у закономерно изменяется в зависимости от изменения другой величины х или других случайных величин х1, x2, ..., хn. Данные связи проявляются не в каждом отдельном случае, а во всей совокупности в целом. Только при достаточно большом количестве случаев каждому значению случайного признака х будет соответствовать распределение средних значений случайного признака у. Наличие корреляционно-регрессионных связей присуще многим общественным явлениям.

Известно, что увеличение количества внесенных удобрений ведет к повышению урожайности. Это справедливое положение, подтверждаемое в массе явлений, совсем не означает, что на отдельных одинаково удобренных участках будет одинаковая урожайность одной и той же сельскохозяйственной культуры. Вероятнее всего, уровни урожайности будут различаться. Кроме того, существует вероятность, что более высокая урожайность может наблюдаться на менее удобренных участках: на урожайность влияет не только количество внесенных в почву удобрений, но и другие, неучтенные факторы (качество семян, предшествующие культуры, рельеф местности, агротехника земледелия, сроки и качество посева и уборки). Но если в анализ включить достаточно большое число площадей, то обнаружится прямая зависимость между количеством внесенных удобрений (в допустимых пределах) и средним уровнем урожайности. Значит, важная особенность корреляционно-регрессионных связей (как и других стохастических) состоит в том, что они обнаруживаются не в единичных случаях, а в массовых явлениях и требуют для своего исследования массовых наблюдений, то есть статистических данных.

Корреляционно-регрессионная связь – понятие более узкое, чем стохастическая связь. Последняя может отражаться не только в изменении средней величины, но и в вариации одного признака в зависимости от другого, то есть любой другой характеристики вариации. Таким образом, данная связь является частным случаем стохастической связи.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Таким образом, в общем виде задача эконометрики в области изучения взаимосвязей состоит не только в количественной оценке их наличия, направления и силы связи, но и в определении формы (аналитического выражения) влияния факторных признаков на результативный.

Поделись с друзьями