Нужна помощь в написании работы?

Существуют две меры соответствия линии наименьших квадратов имеющимся данным. Стандартная ошибка оценки (или предсказания), которую обозначают , приблизительно указывает величину ошибок прогнозирования (остатков) для имеющихся данных в тех же единицах, в которых измерена и переменная У. Соответствующие формулы приведены ниже.

 (для вычисления)

 (для интерпретации).

Значение , часто называемое коэффициентом детерминации, говорит о том, какой процент вариации У объясняется поведением X.

Доверительные интервалы и проверка гипотез для коэффициента регрессии связаны с определенными предположениями относительно анализируемой совокупности данных, которые должны гарантировать, что она состоит из независимых наблюдений, характеризующихся линейной взаимосвязью с равной вариацией и приблизительно нормально распределенной случайностью. Во-первых, эти данные должны представлять собой произвольную выборку из интересующей нас генеральной совокупности. Во-вторых, линейная модель указывает, что наблюдаемое значение У определяется взаимосвязью в генеральной совокупности плюс случайная ошибка, имеющая нормальное распределение. Существуют параметры генеральной совокупности, соответствующие наклону и сдвигу линии наименьших квадратов, построенной на данных выборки:

Y = (α+βХ)+ε =

= (Взаимосвязь в генеральной совокупности) + случайность.

где ε имеет нормальное распределение со средним значением, равным 0, и постоянным стандартным отклонением σ.

Статистические выводы (использование доверительных интервалов и проверки статистических гипотез) относительно коэффициентов линии наименьших квадратов основываются, как обычно, на их стандартных ошибках и значениях из t-таблицы для п - 2 степеней свободы. Стандартная ошибка коэффициента наклона, , указывает приблизительную величину отклонения оценки наклона, b (коэффициент регрессии, вычисленный на основе данных выборки), от наклона в генеральной совокупности, β, вызванного случайным характером выборки. Стандартная ошибка сдвига, , указывает приблизительно, насколько далеко оценка сдвига а отстоит от истинного сдвига α в генеральной совокупности. Соответствующие формулы выглядят следующим образом:

стандартная ошибка коэффициента регрессии b:

стандартная ошибка сдвига:

.

Доверительный интервал для наклона в генеральной совокупности, β:

от  до .

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Доверительный интервал для сдвига в генеральной совокупности, α:

от  до .

Один из способов проверки, является ли обнаруженная взаимосвязь между X и У реальной или это просто случайное совпадение, заключается в сравнении β с заданным значением β0 = 0. О значимой связи можно говорить в том случае, если 0 не попадает в доверительный интервал, базирующийся на b и Sb, или если абсолютное значение t = b/Sb превосходит соответствующее t-значение в t-таблице.

t – таблица  (t - критерий Стьюдента)

Доверительный интервал

Двухсторонний

80%

90%

95%

98%

99%

99,8%

99,9%

Односторонний

90%

95%

97,5%

99%

99,5%

99,9%

99,95%

Уровень значимости проверки гипотезы

Двухсторонний тест

0,20

0,10

0,05

0,02

0,01

0,002

0,001

Односторонний тест

0,10

0,05

0,025

0,01

0,005

0,001

0,0005

В целом: степени свободы

Критические значения t

1

3,078

6,314

12,706

31,821

63,657

318,309

636,619

2

1,886

2,920

4,303

6,965

9,925

22,327

31,599

3

1,638

2,353

3,182

4,541

5,841

10,215

12,924

4

1,533

2,132

2,776

3,747

4,604

7,173

8,610

5

1,476

2,015

2,571

3,365

4,032

5,893

6,869

6

1,440

1,943

2,447

3,143

3,707

5,208

5,959

7

1,415

1,895

2,365

2,998

3,499

4,785

5,408

8

1,397

1,860

2,306

2,896

3,355

4,505

5,041

9

1,383

1,833

2,262

2,821

3,250

4,297

4,781

10

1,372

1,812

2,228

2,764

3,169

4,144

4,587

11

1,363

1,796

2,201

2,718

3,106

4,025

4,437

12

1,356

1,782

2,179

2,681

3,055

3,930

4,318

13

1,350

1,771

2,160

2,650

3,012

3,852

4,221

14

1,345

1,761

2,145

2,624

2,977

3,787

4,140

15

1,341

1,753

2,131

2,602

2,947

3,733

4,073

38

1,304

1,686

2,024

2,429

2,712

3,319

3,566

39

1,304

1,685

1,023

2,426

2,708

3,313

3,558

Бесконечность

1,282

1,645

1,960

2,326

2,576

3,090

3,291

Эта проверка эквивалентна проверке значимости коэффициента корреляции и означает, по сути, то же самое, что и F-тест для случая, когда уравнение содержит только одну переменную X. Разумеется, любой из коэффициентов (a или b) можно сравнить с любым подходящим заданным значением, воспользовавшись одно- или двусторонней проверкой (в зависимости от конкретных обстоятельств) и с использованием тех же методов проверки, что были рассмотрены для среднего генеральной совокупности.

Поделись с друзьями