При анализе двумерной диаграммы рассеяния можно обнаружить различные взаимосвязи. Простейшей, с точки зрения анализа, является линейная взаимосвязь, которая выражается в том, что точки на диаграмме рассеяния с постоянным разбросом группируются случайным образом вдоль прямой линии. Диаграмма свидетельствует об отсутствии взаимосвязи, если точки размещены случайно и при перемещении слева направо невозможно обнаружить какой-либо уклон (ни вверх, ни вниз). Двумерная диаграмма рассеяния характеризуется нелинейной взаимосвязью, если точки на ней группируются вдоль кривой, а не прямой линии. Поскольку количество видов кривых практически безгранично, анализ нелинейной взаимосвязи оказывается намного сложнее, однако взаимосвязь можно приблизить к линейной, применив к данным соответствующее преобразование. Проблема неравной вариации возникает тогда, когда при перемещении по горизонтали на диаграмме рассеяния вариация точек по вертикали сильно меняется. Неравная вариация приводит к снижению надежности коэффициента корреляции и регрессионного анализа. Проблему неравной вариации можно решить с помощью соответствующих преобразований данных или с помощью, так называемой взвешенной регрессии. Проблема кластеринга (разделение совокупности на группы более однородных объектов) возникает в случае образования на диаграмме рассеяния отдельных, ярко выраженных групп точек; в таких случаях каждую группу следует анализировать отдельно. Некоторая точка данных является выбросом (резко отклоняющимся значением), если она не соответствует взаимосвязи между остальными данными; резко отклоняющиеся значения могут исказить статистические характеристики двумерной совокупности данных.
Поможем написать любую работу на аналогичную тему