Для выявления наиболее существенных черт статистического материала и исключения случайностей, связанных с погрешностями или недостаточным объемом экспериментальных данных, производят обработку статистических данных, называемую ВЫРАВНИВАНИЕМ статистического ряда.
Вид теоретической кривой распределения обычно, но не всегда выбирается заранее из общих соображений, в том числе ВНЕШНЕГО вида графика статистического распределения. Задача сводится к выбору наиболее подходящих параметров распределения, при которых соответствие между статистическим и теоретическим распределением оказывается наилучшим.
Чаще всего используют известный метод НАИМЕНЬШИХ КВАДРАТОВ, основанный на том, чтобы сумма квадратов отклонений экспериментальных точек от аппроксимирующей кривой была минимальной. Используется также МЕТОД МОМЕНТОВ, согласно которому для функции, зависящей, например, от 2-х параметров, параметры кривой распределения подбираются таким образом, чтобы математическое ожидание и дисперсия теоретического распределения совпадали с их статистическими оценками. Если число параметров больше двух, используется такое число эмпирических (выборочных) моментов, сколько имеется параметров.
К оценкам параметров закона распределения предъявляются требования СОСТОЯТЕЛЬНОСТИ, НЕСМЕЩЕННОСТИ и ЭФФЕКТИВНОСТИ.
Статистическая оценка называется СОСТОЯТЕЛЬНОЙ, если она сходится по вероятности к оцениваемому теоретическому параметру при увеличении числа наблюдений.
Статистическая оценка называется НЕСМЕЩЕННОЙ, если ее математическое ожидание равно оцениваемой характеристике.
Несмещенная статистическая оценка называется ЭФФЕКТИВНОЙ, если она имеет наименьшую возможную дисперсию.
Оценки, полученные методом моментов, часто бывают СМЕЩЕННЫМИ и НЕЭФФЕКТИВНЫМИ. Метод наименьших квадратов, как и некоторые другие (метод наименьших абсолютных уклонений, метод МИНИМАКСА - наименьшего максимума абсолютных отклонений) являются приближенными.
Наилучшим считается метод МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ. Этот метод основан на том, что функция плотности вероятности зависит не только от значений переменной , принявшей значения Х1, Х2, Х3, ... Хn, но и от значений параметров θ1, θ2, θ3…θn, то есть при фиксированных значениях Хi случайной величины рассматривается функция МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ.
.
Задача состоит в том, чтобы найти такое распределение , которое наилучшим образом соответствовало выборочному набору значений Хi. Соответствие распределения, зависящего от θ и набора наблюдений (X1, X2, X3, ..... Xn), означает, что вероятность получить тот же самый набор значений случайной величины при другом значении параметра θ меньше. Задача состоит в том, чтобы найти такое значение параметра θ *, при котором для фиксированных значений X1, X2, X3, ..... Xn выполняется условие
(2.24)
Известно, что точка максимума не изменится, если вместо L(θ) рассматривать
ln L(θ) = ln(θ).
Функция ln(θ). называется ЛОГАРИФМИЧЕСКОЙ ФУНКЦИЕЙ ПРАВДОПОДОБИЯ. Она удобнее в использовании при решении задачи.
Так как X1, X2, X3, ..... Xn - независимые одинаково распределенные случайные величины, то в соответствии с формулой (1.7)
(2.25)
и
(2.26)
Для отыскания максимума функции (2.26) решают уравнение правдоподобия
(2.27)
Оценки математического правдоподобия при выполнении условия РЕГУЛЯРНОСТИ состоятельны, асимптотически нормальны и эффективны , а решение уравнений правдоподобия единственно. Таким образом, метод дает асимптотически наилучшие оценки: несмещенные с наименьшей дисперсией.
Для оценки соответствия между выбранной теоретической кривой и выборочными данными (X1, X2, X3,....Xn) используют КРИТЕРИИ СОГЛАСИЯ. Для плотности распределения наиболее употребим критерий ПИРСОНА.
Поможем написать любую работу на аналогичную тему