Нужна помощь в написании работы?

Хороший способ определить круг важных Х- переменных заключается в том, чтобы внимательно проанализировать решаемую задачу, имеющиеся данные и цели, которых вы хотите добиться. Затем необходимо составить список Х- переменных, классифицированных по приоритетам. Сделать это можно следующим образом.

1.     Выберите переменную У, которую вам необходимое объяснить, понять или прогнозировать.

2.     Выберите Х- переменную,  которая,  как вам кажется,  является наиболее важной в определении или объяснении У. Если это вызывает у вас затруднения,  поскольку все Х- переменные кажутся вам одинаково важными, примите волевое решение.

3.     Выберите самую важную среди оставшихся Х- переменных, задав себе вопрос: "Принимая во внимание первую переменную, какая из оставшихся
Х- переменных несет больше новой информации, объясняющей поведение
переменной У?"

4.     Продолжайте выбирать по этому принципу самые важные из оставшихся Х- переменных до тех пор, пока не классифицируете по приоритетам весь перечень Х- переменных. На каждой стадии задавайте себе вопрос: "Принимая во внимание уже отобранные Х- переменные, какая из оставшихся Х- переменных несет больше новой информации, объясняющей поведение переменной У?"

Затем вычислите регрессию, используя лишь те Х- переменные из составленного вами списка, которые кажутся вам важнейшими. Вычислите еще несколько регрессий, включая в свой анализ некоторые из оставшихся Х- переменных (или все эти переменные), и выясните, действительно ли они влияют на прогнозирование переменной У. Наконец, выберите тот результат регрессии, который кажется вам наиболее полезным.

Несмотря на то, что описанная процедура выглядит достаточно субъективной (поскольку зависит в основном от вашего субъективного мнения), ей присущи два важных преимущества. Во-первых, когда необходимо сделать выбор между двумя Х- переменными, которые практически одинаково объясняют поведение переменной У, окончательный выбор остается за вами (автоматизированная процедура может в этом случае сделать менее содержательный выбор). Во-вторых, тщательно классифицировав по приоритетам свои независимые Х- переменные, вы можете глубже разобраться в исследуемой ситуации. Такое прояснение решаемой задачи может оказаться не менее полезным, чем результаты множественной регрессии!

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.
Поделись с друзьями