Как было отмечено в предыдущем разделе, наличие корреляционных связей между ошибками различных эконометрических моделей, входящих во взаимозависимую систему, ведет к потере свойства эффективности оценок их коэффициентов. В такой ситуации теория рекомендует для получения этих оценок вместо двухшагового использовать трехшаговый МНК, который включает в себя дополнительный этап, связанный с применением обобщенного МНК при известной ковариационной матрице ошибок различных моделей. В результате трехшаговый МНК применяется как метод оценивания коэффициентов структурной формы всей системы моделей, а не отдельных ее уравнений.
Дадим достаточно схематичное изложение трехшагового МНК в общем виде.
Представим i-е структурное уравнение системы в виде, аналогичном (8.50), i=1,2,..., т:
уi=Yi×ai+Xi×bi +ei=Zi×di+ei, (8.70)
где, как и в разделе 8.4, Zi= – матрица, сформированная на основе исходных значений эндогенных и экзогенных переменных i-й модели; di=¢– вектор параметров i-й модели; ei – вектор ошибки i-й модели.
Умножим левую и правую части выражения (8.70) слева на транспонированную матрицу значений всех экзогенных переменных X¢. В результате получим модель следующего вида:
X¢×уi = X¢×Zi×di+X¢×ei . (8.71)
В выражении (8.71) вектор X¢×уi рассматривается как вектор значений новой зависимой переменной, матрица X¢×Zi – как матрица значений новых независимых факторов, а вектор X¢×ei – как вектор значений новой ошибки. При этом ковариационная матрица этой ошибки определяется согласно следующему выражению:
Cov(xi )= M=M=sii2 ×X¢×X, (8.72)
где sii2 – постоянная дисперсия ошибки i-го уравнения системы.
Поскольку sii2×X¢×X¹sii2×Е, т. е. ковариационная матрица ошибки имеет вид отличный от единичной матрицы, умноженной на постоянную дисперсию, то для получения эффективных оценок коэффициентов модели (8.71) необходимо использовать обобщенный МНК. Оценка di вектора коэффициентов di в этом случае определяется согласно следующему выражению:
di =–1× Zi¢×X×(X¢×X)–1X¢×yi . (8.73)
Заметим, что с учетом представления матрицы Zi в виде и выражения (8.54) формула (8.73) тождественна выражению (8.58).
Применим преобразование (8.71) ко всей системе взаимозависимых уравнений, представленной в форме записи, аналогичной выражению (8.25). В результате получим следующую систему:
X¢× y1 X¢× Z1 0 d1 X¢×e1
X¢× y2 = X¢× Z2 × d2 + X¢×e2 . (8.74)
… . . . . . . . . . . . . . . . . . … …
X¢× ym 0 X¢× Z m d m X¢×e2
Ковариационная матрица вектора ошибки системы (8.74) будет иметь следующий вид:
s11 ×X¢×X s12 ×X¢×X ... s1m ×X¢×X
Cov(x) = s21 ×X¢×X s22 ×X¢×X ... s2m ×X¢×X (8.75)
......................................................
sm1 ×X¢×X sm 2 ×X¢×X ... smm ×X¢×X ,
где символом sij обозначена ковариация ошибок i-го и j-го уравнений системы. Иными словами,
sij = Cov(xi ,x j )= M =
Если из значений sij сформировать матрицу S размера т´т, то выражение (8.75) можно представить как кронеккерово произведение матриц S и X¢×X.
Cov(xi )= S Ä X¢×X = W, (8.77)
где Ä – символ кронеккерова произведения.
Согласно свойству кронеккерова произведения,
W–1= S–1 Ä (X¢×X)–1. (8.78)
С учетом (8.78) оценку вектора коэффициентов всей системы взаимозависимых эконометрических моделей получим с использованием обобщенного МНК в следующем виде:
d1 Z1¢×X 0 X¢×Z1 0 –1 Z1¢×X 0 X¢×y1
d= … = … × W–1× … … ×W –1 × … .
dm 0 Zm¢×X 0 X¢×Zm 0 Zm¢×X X¢×ym
(8.79)
Таким образом, рассмотренная процедура оценки коэффициентов структурной формы всей системы взаимозависимых эконометрических моделей состоит из трех последовательных этапов, определяющих содержание трехшагового МНК.
Этап 1.
На этом этапе с использованием обычного МНК на основании приведенной формы определяются расчетные значения переменных , рассматриваемых в качестве независимых эндогенных переменных в каждом из уравнений системы, j=1,2,..., m; j¹i, где i – индекс уравнения системы.
Этап 2.
Как и в двухшаговом МНК, на этом этапе с использованием значений определяются оценки коэффициентов структурной формы каждого из уравнений системы. Для этой цели используется выражение (8.73). Кроме того, на этом шаге определяются вектора ошибок каждого из уравнений системы иi=(иi1,..., иiТ)¢, с использованием которых рассчитываются на основании формулы (8.76) оценки дисперсии каждого из уравнений sii2 и их взаимные ковариации sij и в соответствии с выражением (8.75) формируется ковариационная матрица W.
Этап 3.
С помощью обобщенного МНК (выражение (8.79)) определяются “окончательные” оценки коэффициентов структурной формы всей системы взаимозависимых эконометрических моделей, которые теоретически при наличии корреляции между ошибками различных уравнений являются “более эффективными” по сравнению с аналогичными оценками двухшагового МНК.
Если ошибки уравнений системы не коррелируют между собой, т. е. sij=0, i¹j, то трехшаговый МНК не имеет преимуществ перед двухшаговым. При применении трехшагового МНК необходимо соблюдать некоторые дополнительные правила, что делает его процедуру менее универсальной по сравнению с двухшаговой. Они состоят в следующем:
1. Процедура выполняется только для идентифицируемых и сверхидентифицируемых уравнений системы. Тождества и неидентифицируемые уравнения в ней не участвуют.
2. Процедуру желательно выполнять для групп идентифицируемых и неидентифицируемых уравнений раздельно. При этом, если в соответствующую группу входит только одно сверхидентифицируемое уравнение, то трехшаговая процедура для него превращается в двухшаговую.
Наряду с рассмотренными в данном разделе методами существуют и некоторые другие, позволяющие получить «приемлемые по качеству» оценки коэффициентов структурной формы системы взаимозависимых эконометрических моделей. Так, например, эти оценки для отдельных моделей можно найти с помощью метода наименьшего дисперсионного отношения, в свою очередь, базирующегося на методе максимального правдоподобия с ограниченной информацией, использующего, кроме обычных предположений о нормальности распределения и независимости ошибок структурного уравнения, также дополнительное предположение о ранге матрицы значений независимых переменных приведенной формы. Оценить коэффициенты структурной формы всей системы эконометрических моделей можно и на основе метода максимального правдоподобия с полной информацией.
Однако перечисленные методы гораздо более трудоемки по сравнению с двухшаговым и трехшаговым МНК , и, что самое главное, они не дают никаких преимуществ перед последними с точки зрения качества полученных оценок. Вследствие этого, в большинстве эконометрических исследований, проводимых на основе систем взаимозависимых уравнений, для оценки их коэффициентов рекомендуется использовать именно двухшаговый и трехшаговый МНК.
Поможем написать любую работу на аналогичную тему
Реферат
Оценки параметров системы взаимозависимых эконометрических моделей с использованием трехшагового МНК
От 250 руб
Контрольная работа
Оценки параметров системы взаимозависимых эконометрических моделей с использованием трехшагового МНК
От 250 руб
Курсовая работа
Оценки параметров системы взаимозависимых эконометрических моделей с использованием трехшагового МНК
От 700 руб