Рассмотрим уравнение регрессии вида
Для каждого момента времени значение компоненты определяется как или .
Рассматривая последовательность остатков как временной ряд, можно построить график их зависимости от времени. В соответствии с предпосылками МНК остатки должны быть случайными. Однако при моделировании временных рядов нередко встречается ситуация, когда остатки содержат тенденцию или циклические колебания. Это говорит о том, что каждое следующее значение остатков зависит от предыдущих. В этом случае говорят о наличии автокорреляции остатков.
Автокорреляция остатков может быть вызвана несколькими причинами, имеющими различную природу. Во-первых, иногда она связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака. Во-вторых, в ряде случаев причину автокорреляции остатков следует искать в формулировке модели. Модель может не включать фактор, оказывающий существенное воздействие на результат, влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим
Фактором является фактор времени . Кроме того, в качестве таких существенных факторов могут выступать лаговые значения переменных, включенных в модель. Либо модель не учитывает несколько второстепенных факторов, совместное влияние которых на результат существенно в виду совпадения тенденций их изменения или фаз циклических колебаний.
От истинной автокорреляции остатков следует отличать ситуации, когда причина автокорреляции заключается в неправильной спецификации функциональной формы модели. В этом случае следует изменить форму связи факторных и результативного признаков, а не использовать специальные методы расчета параметров уравнения регрессии при наличии автокорреляции остатков.
Существуют два наиболее распространенных метода определения автокорреляции остатков. Первый метод – это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод – использование критерия Дарбина-Уотсона и расчет величины - отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии.
Коэффициент автокорреляции остатков первого порядка определяется как
, где ,
Так как - остатки, полученные по уравнению регрессии, параметры которого определены обычным МНК, то в соответствии с предпосылками МНК их сумма и среднее значение равны нулю: , .
Следовательно, можно предположить, что .
Предположим также .
Тогда формула для расчета коэффициента автокорреляции остатков преобразуется следующим образом:
Формула расчета критерия Дарбина-Уотсона будет иметь вид:
Можно вывести следующее соотношение между критерием Дарбина-Уотсона и коэффициентом автокорреляции остатков первого порядка:
.
Таким образом, если в остатках существует полная положительная автокорреляция и , то . Если в остатках полная отрицательная автокорреляция, то и, следовательно, . Если автокорреляция остатков отсутствует, то и . Следовательно .
Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий. Выдвигается гипотеза об отсутствии автокорреляции остатков. Альтернативные гипотезы и состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по специальным таблицам определяются критические значения критерия Дарбина-Уотсона и для заданного числа наблюдений , числа независимых переменных модели и уровня значимости . По этим значениям числовой промежуток разбивается на пять отрезков.
Принятие или отклонение каждой из гипотез с вероятностью показании ниже.
Есть положительная автокорреляция остатков. отклоняется. С вероятностью принимается |
Зона неопределенности |
Нет оснований отклонять (автокорреляция остатков отсутствует |
Зона неопределенности |
Есть отрицательная автокорреляция остатков. отклоняется. С вероятностью принимается |
|
|
|
|
|
|
|
Если фактическое значение критерия Дарбина-Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу .
Поможем написать любую работу на аналогичную тему