Нужна помощь в написании работы?

Возможны разные виды уравнений множественной регрессии: линейные и нелинейные.

Ввиду четкой интерпретации параметров наиболее широко используется линейная функция. В линейной множественной регрессии  параметры при  называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.

Рассмотрим линейную модель множественной регрессии

         .                                          (1)

Классический подход к оцениванию параметров линейной модели множественной регрессии основан на методе наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака  от расчетных  минимальна:

         .                                                        (2)

Как известно из курса математического анализа, для того чтобы найти экстремум функции нескольких переменных, надо вычислить частные производные первого порядка по каждому из параметров и приравнять их к нулю.

Итак. Имеем функцию  аргумента:

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

         .

Находим частные производные первого порядка:

        

После элементарных преобразований приходим к системе линейных нормальных уравнений для нахождения параметров линейного уравнения множественной регрессии (1):

             (3)

Для двухфакторной модели данная система будет иметь вид:

        

Метод наименьших квадратов применим и к уравнению множественной регрессии в стандартизированном масштабе:

                                                     (4)

где  – стандартизированные переменные: , , для которых среднее значение равно нулю: , а среднее квадратическое отклонение равно единице: ;  – стандартизированные коэффициенты регрессии.

Стандартизованные коэффициенты регрессии показывают, на сколько единиц изменится в среднем результат, если соответствующий фактор  изменится на одну единицу при неизменном среднем уровне других факторов. В силу того, что все переменные заданы как центрированные и нормированные, стандартизованные коэффициенты регрессии  можно сравнивать между собой. Сравнивая их друг с другом, можно ранжировать факторы по силе их воздействия на результат. В этом основное достоинство стандартизованных коэффициентов регрессии в отличие от коэффициентов «чистой» регрессии, которые несравнимы между собой.

Применяя МНК к уравнению множественной регрессии в стандартизированном масштабе, получим систему нормальных уравнений вида

                                   (5)

где  и  – коэффициенты парной и межфакторной корреляции.

Коэффициенты «чистой» регрессии  связаны со стандартизованными коэффициентами регрессии  следующим образом:

         .                                                                               (6)

Поэтому можно переходить от уравнения регрессии в стандартизованном масштабе (2.4) к уравнению регрессии в натуральном масштабе переменных (2.1), при этом параметр  определяется как .

Рассмотренный смысл стандартизованных коэффициентов регрессии позволяет их использовать при отсеве факторов – из модели исключаются факторы с наименьшим значением .

На основе линейного уравнения множественной регрессии

                                                    (7)

могут быть найдены частные уравнения регрессии:

                                                                    (8)

т.е. уравнения регрессии, которые связывают результативный признак с соответствующим фактором  при закреплении остальных факторов на среднем уровне. В развернутом виде систему (2.8) можно переписать в виде:

        

При подстановке в эти уравнения средних значений соответствующих факторов они принимают вид парных уравнений линейной регрессии, т.е. имеем

                                                               (9)

где

        

Поделись с друзьями